OFFSET
0,1
COMMENTS
The Lambert W function satisfies the functional equations
W(x) + W(y) = W(x*y(1/W(x) + 1/W(y)) = log(x*y)/(W(x)*W(y)) for x and y greater than -1/e, so that 2*W(3) =W(18/W(3)) = 2*(log 3 - log(W(3)). See A299613 for a guide to related sequences.
LINKS
G. C. Greubel, Table of n, a(n) for n = 0..10000
Eric Weisstein's World of Mathematics, Lambert W-Function
EXAMPLE
3*W(3) = 2.0998177899280799199773941411...
MATHEMATICA
w[x_] := ProductLog[x]; x = 3; y = 3; u = N[w[x] + w[y], 100]
RealDigits[u, 10][[1]] (* A299626 *)
RealDigits[2*LambertW[3], 10, 100][[1]] (* G. C. Greubel, Mar 03 2018 *)
PROG
(PARI) 2*lambertw(3) \\ G. C. Greubel, Mar 03 2018
CROSSREFS
KEYWORD
AUTHOR
Clark Kimberling, Mar 03 2018
STATUS
approved