login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A299499 Triangle read by rows, T(n,k) = [x^k] Sum_{k=0..n} p_{n,k}(x) where p_{n,k}(x) = x^k*binomial(n, k)*hypergeom([-k, k-n, k-n], [1, -n], 1/x), for 0 <= k <= n. 2

%I #19 Feb 26 2018 04:19:45

%S 1,1,1,2,2,1,5,5,3,1,11,16,9,4,1,26,44,34,14,5,1,63,122,111,60,20,6,1,

%T 153,341,351,225,95,27,7,1,376,940,1103,796,400,140,35,8,1,931,2581,

%U 3384,2764,1561,651,196,44,9,1,2317,7064,10224,9304,5915,2772,994,264,54,10,1

%N Triangle read by rows, T(n,k) = [x^k] Sum_{k=0..n} p_{n,k}(x) where p_{n,k}(x) = x^k*binomial(n, k)*hypergeom([-k, k-n, k-n], [1, -n], 1/x), for 0 <= k <= n.

%F Let P_{n}(x) = Sum_{k=0..n} p_{n,k}(x) then

%F 2^n*P_{n}(1/2) = A298611(n).

%F P_{n}(-1) = A182883(n), P_{n}(0) = A051286(n).

%F P_{n}( 1) = A108626(n), P_{n}(2) = A299443(n).

%F The general case: for fixed k the sequence P_{n}(k) with n >= 0 has the generating function ogf(k, x) = (1-2*(k+1)*x + (k^2+2*k-1)*x^2 + 2*(k-1)*x^3 + x^4)^(-1/2). The example section shows the start of this square array of sequences.

%F These sequences can be computed by the recurrence P(n,k) = ((2-n)*P(n-4,k)+(3-2*n)*(k-1)*P(n-3,k)+(k^2+2*k-1)*(1-n)*P(n-2,k)+(2*n-1)*(k+1)*P(n-1,k))/n with initial values 1, k+1, (k+1)^2+1 and (k+1)^3+2*k+4.

%F The partial polynomials p_{n,k}(x) reduce for x = 1 to A108625 (seen as a triangle).

%e The partial polynomials p_{n,k}(x) start:

%e [0] 1

%e [1] 1, x

%e [2] 1, 2*x+ 1, x^2

%e [3] 1, 3*x+ 4, 3*x^2+ 2*x, x^3

%e [4] 1, 4*x+ 9, 6*x^2+12*x+1, 4*x^3+ 3*x^2, x^4

%e [5] 1, 5*x+16, 10*x^2+36*x+9, 10*x^3+24*x^2+3*x, 5*x^4+4*x^3, x^5

%e .

%e The polynomials P_{n}(x) start:

%e [0] 1

%e [1] 1 + x

%e [2] 2 + 2*x + x^2

%e [3] 5 + 5*x + 3*x^2 + x^3

%e [4] 11 + 16*x + 9*x^2 + 4*x^3 + x^4

%e [5] 26 + 44*x + 34*x^2 + 14*x^3 + 5*x^4 + x^5

%e .

%e The triangle starts:

%e [0] 1

%e [1] 1, 1

%e [2] 2, 2, 1

%e [3] 5, 5, 3, 1

%e [4] 11, 16, 9, 4, 1

%e [5] 26, 44, 34, 14, 5, 1

%e [6] 63, 122, 111, 60, 20, 6, 1

%e [7] 153, 341, 351, 225, 95, 27, 7, 1

%e [8] 376, 940, 1103, 796, 400, 140, 35, 8, 1

%e [9] 931, 2581, 3384, 2764, 1561, 651, 196, 44, 9, 1

%e .

%e The square array P_{n}(k) near k=0:

%e ...... [k=-2] 1, -1, 2, -1, -1, 10, -25, 51, -68, 41, ...

%e A182883 [k=-1] 1, 0, 1, 2, 1, 6, 7, 12, 31, 40, ...

%e A051286 [k=0] 1, 1, 2, 5, 11, 26, 63, 153, 376, 931, ...

%e A108626 [k=1] 1, 2, 5, 14, 41, 124, 383, 1200, 3799, 12122, ...

%e A299443 [k=2] 1, 3, 10, 35, 127, 474, 1807, 6999, 27436, 108541, ...

%e ...... [k=3] 1, 4, 17, 74, 329, 1490, 6855, 31956, 150607, 716236, ...

%p CoeffList := p -> op(PolynomialTools:-CoefficientList(p,x)):

%p PrintPoly := p -> print(sort(expand(p),x,ascending)):

%p T := (n,k) -> x^k*binomial(n, k)*hypergeom([-k,k-n,k-n], [1,-n], 1/x):

%p P := [seq(add(simplify(T(n,k)),k=0..n), n=0..10)]:

%p seq(CoeffList(p), p in P); seq(PrintPoly(p), p in P);

%p R := proc(n,k) option remember; # Recurrence

%p if n < 4 then return [1,k+1,(k+1)^2+1,(k+1)^3+2*k+4][n+1] fi; ((2-n)*R(n-4,k)+

%p (3-2*n)*(k-1)*R(n-3,k)+(k^2+2*k-1)*(1-n)*R(n-2,k)+(2*n-1)*(k+1)*R(n-1,k))/n end:

%p for k from -2 to 3 do lprint(seq(R(n,k), n=0..9)) od;

%t nmax = 10;

%t p[n_, k_, x_] := x^k*Binomial[n, k]*HypergeometricPFQ[{-k, k-n, k-n}, {1, -n}, 1/x];

%t p[n_, x_] := Sum[p[n, k, x], {k, 0, n}];

%t Table[CoefficientList[p[n, x], x], {n, 0, nmax}] // Flatten (* _Jean-François Alcover_, Feb 26 2018 *)

%Y Cf. A051286, A108625, A108626, A182883, A298611, A299443, A299500.

%K nonn,tabl

%O 0,4

%A _Peter Luschny_, Feb 11 2018

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified April 25 05:55 EDT 2024. Contains 371964 sequences. (Running on oeis4.)