login
Lexicographically earliest sequence of distinct positive terms such that, for any n > 0, if prime(k) divides a(n) then k divides a(n+1) (where prime(k) denotes the k-th prime).
1

%I #10 Feb 19 2018 14:46:06

%S 1,2,3,4,5,6,8,7,12,10,9,14,16,11,15,18,20,21,24,22,25,27,26,30,36,28,

%T 32,13,42,40,33,50,39,48,34,35,60,54,38,56,44,45,66,70,72,46,63,52,78,

%U 84,64,17,49,68,77,80,51,98,76,88,55,75,90,96,58,100,57

%N Lexicographically earliest sequence of distinct positive terms such that, for any n > 0, if prime(k) divides a(n) then k divides a(n+1) (where prime(k) denotes the k-th prime).

%C In other words, for any n > 0, A290103(a(n)) divides a(n+1).

%C See also A299441 (where we consider only least prime factors) and A299442 (where we consider only greatest prime factors).

%H Rémy Sigrist, <a href="/A299440/b299440.txt">Table of n, a(n) for n = 1..10000</a>

%H Rémy Sigrist, <a href="/A299440/a299440.gp.txt">PARI program for A299440</a>

%e The first terms, alongside A290103(a(n)), are:

%e n a(n) A290103(a(n))

%e -- ---- -------------

%e 1 1 1

%e 2 2 1

%e 3 3 2

%e 4 4 1

%e 5 5 3

%e 6 6 2

%e 7 8 1

%e 8 7 4

%e 9 12 2

%e 10 10 3

%e 11 9 2

%e 12 14 4

%e 13 16 1

%e 14 11 5

%e 15 15 6

%e 16 18 2

%e 17 20 3

%e 18 21 4

%e 19 24 2

%e 20 22 5

%o (PARI) See Links section.

%Y Cf. A290103, A299441, A299442.

%K nonn

%O 1,2

%A _Rémy Sigrist_, Feb 10 2018