login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A299433 Denominators of coefficients in S(x) where: C(x)^(1/2) - S(x)^(1/2) = 1 such that C'(x)*S(x)^(1/2) = S'(x)*C(x)^(1/2) = 2*x*C(x). 6
1, 1, 1, 3, 6, 90, 810, 15120, 68040, 24494400, 1020600, 12933043200, 9093546000, 14122883174400, 2482538058000, 76263569141760000, 59580913392000, 15557768104919040000, 14357510604637200000, 28377369023372328960000, 8183781044643204000000, 3539793011975464314470400000, 270064774473225732000000, 13677760198273194111113625600000 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,4

LINKS

Table of n, a(n) for n=0..23.

FORMULA

The functions C = C(x) and S = S(x) satisfy:

(1) sqrt(C) - sqrt(S) = 1.

(2a) C'*sqrt(S) = S'*sqrt(C) = 2*x*C.

(2b) C' = 2*x*C/sqrt(S).

(2c) S' = 2*x*sqrt(C).

(3a) C = 1 + Integral 2*x*C/sqrt(S) dx.

(3b) S = Integral 2*x*sqrt(C) dx.

(4a) sqrt(C) = exp( Integral x/(sqrt(C) - 1) dx ).

(4b) sqrt(S) = exp( Integral x/sqrt(S) dx ) - 1.

(5a) C - S = exp( Integral 2*x*C/(C*sqrt(S) + S*sqrt(C)) dx ).

(5b) C - S = exp( Integral C'*S'/(C*S' + S*C') dx).

(6a) sqrt(C) = exp( sqrt(C) - 1 - x^2/2 ).

(6b) sqrt(C) = 1 + x^2/2 + Integral x/(sqrt(C) - 1) dx.

EXAMPLE

G.f.: S(x) = x^2 + 2/3*x^3 + 1/6*x^4 + 1/90*x^5 - 1/810*x^6 + 1/15120*x^7 + 1/68040*x^8 - 139/24494400*x^9 + 1/1020600*x^10 - 571/12933043200*x^11 + ...

Related power series begin:

C(x) = 1 + 2*x + 5/3*x^2 + 13/18*x^3 + 43/270*x^4 + 5/432*x^5 - 19/17010*x^6 + 41/2721600*x^7 + 1/40824*x^8 - 7243/1175731200*x^9 + 923/1515591000*x^10 + ...

sqrt(C) = 1 + x + 1/3*x^2 + 1/36*x^3 - 1/270*x^4 + 1/4320*x^5 + 1/17010*x^6 - 139/5443200*x^7 + 1/204120*x^8 - 571/2351462400*x^9 - 281/1515591000*x^10 + ... + A005447(n)/A005446(n)*x^n + ...

MATHEMATICA

terms = 30; c[x_] = Assuming[x > 0, ProductLog[-1, -Exp[-1 - x^2/2]]^2 + O[x]^terms]; Integrate[2*x*Sqrt[c[x]] + O[x]^terms, x] // CoefficientList[#, x] & // Denominator (* Jean-Fran├žois Alcover, Feb 22 2018 *)

PROG

(PARI) {a(n) = my(C=1, S=x^2); for(i=0, n, C = (1 + sqrt(S +O(x^(n+2))))^2; S = intformal( 2*x*sqrt(C) ) ); denominator(polcoeff(S, n))}

for(n=0, 30, print1(a(n), ", "))

CROSSREFS

Cf. A299432 (numerators in S), A299430/A299431 (C), A005447/A005446 (sqrt(C).

Sequence in context: A213138 A157197 A211896 * A036286 A084008 A092680

Adjacent sequences:  A299430 A299431 A299432 * A299434 A299435 A299436

KEYWORD

nonn,frac

AUTHOR

Paul D. Hanna, Feb 09 2018

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified June 26 10:12 EDT 2019. Contains 324375 sequences. (Running on oeis4.)