This site is supported by donations to The OEIS Foundation. Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A299327 Rectangular array by antidiagonals: row n gives the ranks of {2,3}-power towers in which the maximal runlength is n; see Comments. 2
 1, 2, 3, 4, 7, 6, 5, 8, 14, 13, 10, 9, 16, 28, 27, 11, 12, 19, 34, 56, 55, 22, 15, 26, 39, 70, 112, 111, 23, 17, 29, 54, 79, 142, 224, 223, 45, 18, 30, 57, 110, 159, 286, 448, 447, 48, 20, 33, 58, 113, 222, 319, 574, 896, 895, 92, 21, 38, 69, 114, 225, 446 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS Suppose that S is a set of real numbers.  An S-power-tower, t, is a number t = x(1)^x(2)^...^x(k), where k >= 1 and x(i) is in S for i = 1..k.  We represent t by (x(1),x(2),...x(k), which for k > 1 is defined as (x(1),((x(2),...,x(k-1)); (2,3,2) means 2^9.  The number k is the *height* of t.  If every element of S exceeds 1 and all the power towers are ranked in increasing order, the position of each in the resulting sequence is its *rank*.  See A299229 for a guide to related sequences. LINKS EXAMPLE Northwest corner:    1   2   4   5   10   11   23   23   45   48    3   7   8   9   12   15   17   18   20   21    6  14  16  19   26   29   30   33   38   40   13  28  34  39   54   57   58   69   78   80   27  56  70  79  110  113  114  141  158  160 MATHEMATICA t = {2}; t = {3}; t = {2, 2}; t = {2, 3}; t = {3, 2}; t = {2, 2, 2}; t = {3, 3}; t = {3, 2, 2}; t = {2, 2, 3}; t = {2, 3, 2}; t = {3, 2, 3}; t = {3, 3, 2}; z = 500; g[k_] := If[EvenQ[k], {2}, {3}]; f = 6; While[f < 13, n = f; While[n < z, p = 1; While[p < 15, m = 2 n + 1; v = t[n]; k = 0; While[k < 2^p, t[m + k] = Join[g[k], t[n + Floor[k/2]]]; k = k + 1]; p = p + 1; n = m]]; f = f + 1] r[n_] := Select[Range, Max[Map[Length, Split[t[#]]]] == n & , 12]; TableForm[Table[r[n], {n, 1, 12}]]  (* A299327, array *) w[n_, k_] := r[n][[k]]; Table[w[n - k + 1, k], {n, 12}, {k, n, 1, -1}] // Flatten (* A299327, sequence *) CROSSREFS Cf. A299229. Sequence in context: A106453 A122199 A270196 * A231551 A122198 A122155 Adjacent sequences:  A299324 A299325 A299326 * A299328 A299329 A299330 KEYWORD nonn,easy,tabl AUTHOR Clark Kimberling, Feb 08 2018 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 22 18:53 EDT 2019. Contains 323481 sequences. (Running on oeis4.)