This site is supported by donations to The OEIS Foundation.

 Please make a donation to keep the OEIS running. We are now in our 55th year. In the past year we added 12000 new sequences and reached 8000 citations (which often say "discovered thanks to the OEIS"). We need to raise money to hire someone to manage submissions, which would reduce the load on our editors and speed up editing. Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A299256 Coordination sequence for 3D uniform tiling formed by stacking parallel layers of the 3.6.3.6 2D tiling (cf. A008579). 51

%I

%S 1,6,18,40,72,112,162,220,288,364,450,544,648,760,882,1012,1152,1300,

%T 1458,1624,1800,1984,2178,2380,2592,2812,3042,3280,3528,3784,4050,

%U 4324,4608,4900,5202,5512,5832,6160,6498,6844,7200,7564,7938,8320,8712,9112,9522,9940,10368,10804,11250,11704

%N Coordination sequence for 3D uniform tiling formed by stacking parallel layers of the 3.6.3.6 2D tiling (cf. A008579).

%D B. Grünbaum, Uniform tilings of 3-space, Geombinatorics, 4 (1994), 49-56. See tiling #18.

%H Colin Barker, <a href="/A299256/b299256.txt">Table of n, a(n) for n = 0..1000</a>

%H Reticular Chemistry Structure Resource (RCSR), <a href="http://rcsr.net/nets/kag">The kag tiling (or net)</a>

%H <a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (2,0,-2,1).

%F G.f.: (1 + 2*x)*(x^4 - 2*x^3 - 2*x^2 - 2*x - 1) / ((x - 1)^3*(x + 1)).

%F From _Colin Barker_, Feb 09 2018: (Start)

%F a(n) = 9*n^2 / 2 for n>1.

%F a(n) = (9*n^2 - 1) / 2 for n>1.

%F a(n) = 2*a(n-1) - 2*a(n-3) + a(n-4) for n>5.

%F (End)

%p seq(coeff(series((1+2*x)*(x^4-2*x^3-2*x^2-2*x-1)/((x-1)^3*(1+x)),x,n+1), x, n), n = 0 .. 35); # _Muniru A Asiru_, Oct 26 2018

%t Join[{1, 6}, LinearRecurrence[{2, 0, -2, 1}, {18, 40, 72, 112}, 50]] (* _Vincenzo Librandi_, Oct 26 2018 *)

%o (PARI) Vec((1 + 2*x)*(1 + 2*x + 2*x^2 + 2*x^3 - x^4) / ((1 - x)^3*(1 + x)) + O(x^60)) \\ _Colin Barker_, Feb 09 2018

%o (MAGMA) [1, 6] cat [9*n^2 div 2: n in [2..50]]; // _Vincenzo Librandi_, Oct 26 2018

%o (GAP) a:=[18,40,72,112];; for n in [5..50] do a[n]:=2*a[n-1]-2*a[n-3]+a[n-4]; od; Concatenation([1,6],a); # _Muniru A Asiru_, Oct 26 2018

%Y Cf. A008579.

%Y For partial sums see A299262.

%Y The 28 uniform 3D tilings: cab: A299266, A299267; crs: A299268, A299269; fcu: A005901, A005902; fee: A299259, A299265; flu-e: A299272, A299273; fst: A299258, A299264; hal: A299274, A299275; hcp: A007899, A007202; hex: A005897, A005898; kag: A299256, A299262; lta: A008137, A299276; pcu: A005899, A001845; pcu-i: A299277, A299278; reo: A299279, A299280; reo-e: A299281, A299282; rho: A008137, A299276; sod: A005893, A005894; sve: A299255, A299261; svh: A299283, A299284; svj: A299254, A299260; svk: A010001, A063489; tca: A299285, A299286; tcd: A299287, A299288; tfs: A005899, A001845; tsi: A299289, A299290; ttw: A299257, A299263; ubt: A299291, A299292; bnn: A007899, A007202. See the Proserpio link in A299266 for overview.

%K nonn,easy

%O 0,2

%A _N. J. A. Sloane_, Feb 07 2018

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 9 16:42 EST 2019. Contains 329879 sequences. (Running on oeis4.)