

A299232


Ranks of {2,3}power towers that start with 3; see Comments.


3



2, 5, 7, 8, 11, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44, 46, 48, 50, 52, 54, 56, 58, 60, 62, 64, 66, 68, 70, 72, 74, 76, 78, 80, 82, 84, 86, 88, 90, 92, 94, 96, 98, 100, 102, 104, 106, 108, 110, 112, 114, 116, 118, 120, 122, 124
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


COMMENTS

Suppose that S is a set of real numbers. As Spowertower, t, is a number t = x(1)^x(2)^...^x(k), where k >= 1 and x(i) is in S for i = 1..k. We represent t by (x(1),x(2),...,x(k), which for k > 1 is defined as (x(1),((x(2),...,x(k1)); (2,3,2) means 2^9. The number k is the *height* of t. If every element of S exceeds 1 and all the power towers are ranked in increasing order, the position of each in the resulting sequence is its *rank*. See A299229 for a guide to related sequences.


LINKS

Clark Kimberling, Table of n, a(n) for n = 1..10000


FORMULA

a(n) = 2n for all n except 2, 3, and 5.


EXAMPLE

t(76) = (3,2,3,3,2,2), so that 76 is in the sequence.


MATHEMATICA

t[1] = {2}; t[2] = {3}; t[3] = {2, 2}; t[4] = {2, 3}; t[5] = {3, 2};
t[6] = {2, 2, 2}; t[7] = {3, 3}; t[8] = {3, 2, 2}; t[9] = {2, 2, 3};
t[10] = {2, 3, 2}; t[11] = {3, 2, 3}; t[12] = {3, 3, 2};
z = 190; g[k_] := If[EvenQ[k], {2}, {3}]; f = 6;
While[f < 13, n = f; While[n < z, p = 1;
While[p < 12, m = 2 n + 1; v = t[n]; k = 0;
While[k < 2^p, t[m + k] = Join[g[k], t[n + Floor[k/2]]]; k = k + 1];
p = p + 1; n = m]]; f = f + 1]
Select[Range[200], First[t[#]] == 2 &]; (* A299231 *)
Select[Range[200], First[t[#]] == 3 &]; (* A299232 *)


CROSSREFS

Cf. A299229, A299231 (complement).
Sequence in context: A214518 A242401 A050941 * A153083 A140592 A153086
Adjacent sequences: A299229 A299230 A299231 * A299233 A299234 A299235


KEYWORD

nonn,easy


AUTHOR

Clark Kimberling, Feb 06 2018


STATUS

approved



