%I #4 Feb 05 2018 12:47:30
%S 1,37,81,427,2338,13458,84948,543741,3534493,23192676,152386263,
%T 1003140993,6609135301,43551719814,287046844098,1892053858627,
%U 12471668276710,82210001337166,541910867484011,3572172049448373
%N Number of nX4 0..1 arrays with every element equal to 0, 2, 3, 4, 6 or 7 king-move adjacent elements, with upper left element zero.
%C Column 4 of A299221.
%H R. H. Hardin, <a href="/A299217/b299217.txt">Table of n, a(n) for n = 1..210</a>
%H R. H. Hardin, <a href="/A299217/a299217.txt">Empirical recurrence of order 66</a>
%F Empirical recurrence of order 66 (see link above)
%e Some solutions for n=5
%e ..0..1..1..1. .0..1..1..0. .0..1..0..1. .0..0..0..1. .0..1..1..0
%e ..0..0..1..0. .1..1..0..0. .1..1..0..0. .1..0..1..1. .1..1..1..1
%e ..0..1..1..1. .1..0..0..1. .1..1..0..0. .1..1..0..1. .1..1..1..0
%e ..0..1..0..0. .1..0..0..0. .0..0..1..1. .0..1..0..1. .0..0..1..1
%e ..0..0..0..1. .1..1..0..0. .0..0..1..0. .0..0..1..1. .0..1..1..1
%Y Cf. A299221.
%K nonn
%O 1,2
%A _R. H. Hardin_, Feb 05 2018