%I #4 Feb 05 2018 12:46:21
%S 1,12,22,81,307,1201,5066,21292,90443,387999,1664166,7150000,30748156,
%T 132241210,568885960,2447521291,10530203290,45306613634,194935607759,
%U 838730766281,3608741827447,15527073831286,66807269901814
%N Number of nX3 0..1 arrays with every element equal to 0, 2, 3, 4, 6 or 7 king-move adjacent elements, with upper left element zero.
%C Column 3 of A299221.
%H R. H. Hardin, <a href="/A299216/b299216.txt">Table of n, a(n) for n = 1..210</a>
%F Empirical: a(n) = 3*a(n-1) +7*a(n-2) +2*a(n-3) -27*a(n-4) -27*a(n-5) +3*a(n-6) -101*a(n-7) -69*a(n-8) +201*a(n-9) +105*a(n-10) -137*a(n-11) -32*a(n-12) +47*a(n-13) +21*a(n-14) -17*a(n-15) +37*a(n-16) +33*a(n-17) -12*a(n-18) -4*a(n-19) for n>20
%e Some solutions for n=5
%e ..0..0..1. .0..1..0. .0..0..1. .0..1..0. .0..1..1. .0..0..1. .0..1..0
%e ..0..1..1. .0..0..0. .0..1..1. .0..0..0. .0..0..1. .0..0..0. .1..1..1
%e ..0..0..0. .0..0..0. .0..0..0. .0..0..1. .1..1..1. .1..0..0. .0..0..1
%e ..1..0..1. .1..1..0. .0..0..0. .1..1..1. .0..1..0. .0..0..1. .1..0..1
%e ..1..1..1. .1..0..0. .1..0..1. .0..1..0. .1..1..1. .0..0..0. .1..1..1
%Y Cf. A299221.
%K nonn
%O 1,2
%A _R. H. Hardin_, Feb 05 2018