Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.
%I #4 Feb 06 2018 09:19:59
%S 1,1,0,-2,-5,-4,4,21,35,23,-47,-165,-239,-78,479,1273,1508,-138,-4429,
%T -9451,-8845,6207,37937,67123,45144,-83355,-308078,-455109,-166872,
%U 873799,2393041,2916869,-73472,-8133572,-17828640,-17294146,10383571,70275162,127401305,90368779,-147825714
%N Expansion of 1/(1 - x*Product_{k>=1} 1/(1 + x^k)^k).
%H N. J. A. Sloane, <a href="/transforms.txt">Transforms</a>
%F G.f.: 1/(1 - x*Product_{k>=1} 1/(1 + x^k)^k).
%F a(0) = 1; a(n) = Sum_{k=1..n} A255528(k-1)*a(n-k).
%t nmax = 40; CoefficientList[Series[1/(1 - x Product[1/(1 + x^k)^k, {k, 1, nmax}]), {x, 0, nmax}], x]
%Y Antidiagonal sums of A279928.
%Y Cf. A067687, A255528, A299105, A299106, A299108, A299162, A299164, A299166, A299167, A299208, A299209, A299210, A299211.
%K sign
%O 0,4
%A _Ilya Gutkovskiy_, Feb 05 2018