login
A299180
T(n,k)=Number of nXk 0..1 arrays with every element equal to 0, 1, 2, 3, 6 or 7 king-move adjacent elements, with upper left element zero.
6
1, 2, 2, 4, 8, 4, 8, 25, 25, 8, 16, 85, 70, 85, 16, 32, 286, 205, 205, 286, 32, 64, 969, 614, 649, 614, 969, 64, 128, 3281, 1860, 2153, 2153, 1860, 3281, 128, 256, 11114, 5631, 7016, 8368, 7016, 5631, 11114, 256, 512, 37649, 17034, 22819, 30089, 30089, 22819
OFFSET
1,2
COMMENTS
Table starts
...1.....2.....4......8......16......32.......64.......128........256
...2.....8....25.....85.....286.....969.....3281.....11114......37649
...4....25....70....205.....614....1860.....5631.....17034......51507
...8....85...205....649....2153....7016....22819.....73931.....239461
..16...286...614...2153....8368...30089...105709....376826....1341575
..32...969..1860...7016...30089..123258...488812...1973932....7998917
..64..3281..5631..22819..105709..488812..2207509..10286880...48492179
.128.11114.17034..73931..376826.1973932.10286880..56481101..314537796
.256.37649.51507.239461.1341575.7998917.48492179.314537796.2090883077
LINKS
FORMULA
Empirical for column k:
k=1: a(n) = 2*a(n-1)
k=2: a(n) = 3*a(n-1) +a(n-2) +2*a(n-3) -2*a(n-4) -4*a(n-5)
k=3: [order 11] for n>12
k=4: [order 22] for n>28
EXAMPLE
Some solutions for n=5 k=5
..0..0..1..0..1. .0..1..1..0..1. .0..0..1..0..1. .0..1..1..0..0
..1..0..0..1..0. .0..1..1..0..1. .1..1..1..1..0. .0..1..1..0..1
..0..0..0..0..1. .1..1..1..1..1. .1..1..1..1..1. .1..1..1..1..1
..1..0..0..0..0. .0..1..1..1..0. .0..0..1..1..0. .0..1..1..1..0
..0..1..0..1..0. .1..1..0..1..1. .0..1..0..1..1. .1..1..0..1..1
CROSSREFS
Column 1 is A000079(n-1).
Column 2 is A281338.
Column 3 is A298282.
Sequence in context: A281344 A298287 A299359 * A299942 A301841 A302069
KEYWORD
nonn,tabl
AUTHOR
R. H. Hardin, Feb 04 2018
STATUS
approved