login
Number of n X 4 0..1 arrays with every element equal to 0, 1, 2, 4, 5 or 7 king-move adjacent elements, with upper left element zero.
1

%I #6 Sep 10 2023 20:57:03

%S 8,29,41,125,574,1847,6007,22330,78424,268599,949084,3349021,11698218,

%T 41025548,144230504,506030772,1774857783,6230482209,21869669571,

%U 76741039322,269319672263,945257932761,3317391481932,11642270682192

%N Number of n X 4 0..1 arrays with every element equal to 0, 1, 2, 4, 5 or 7 king-move adjacent elements, with upper left element zero.

%C Column 4 of A299097.

%H R. H. Hardin, <a href="/A299093/b299093.txt">Table of n, a(n) for n = 1..210</a>

%H R. H. Hardin, <a href="/A299093/a299093.txt">Empirical recurrence of order 68</a>

%F Empirical recurrence of order 68 (see link above).

%e Some solutions for n=5

%e ..0..1..1..0. .0..0..1..0. .0..0..1..1. .0..1..1..1. .0..1..0..0

%e ..1..1..1..1. .1..1..1..0. .1..0..1..0. .0..1..0..1. .0..1..1..1

%e ..1..1..1..1. .1..0..1..1. .0..0..0..0. .1..1..1..1. .1..1..1..0

%e ..0..1..1..0. .1..1..0..0. .0..0..1..1. .1..1..0..0. .0..0..0..1

%e ..0..0..1..0. .0..0..1..0. .1..0..1..0. .0..1..0..1. .1..0..0..0

%Y Cf. A299097.

%K nonn

%O 1,1

%A _R. H. Hardin_, Feb 02 2018