login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

Number of nX3 0..1 arrays with every element equal to 0, 1, 2, 4, 5 or 7 king-move adjacent elements, with upper left element zero.
1

%I #4 Feb 02 2018 08:19:19

%S 4,13,20,41,101,242,578,1385,3368,8216,20014,48885,119555,292427,

%T 715827,1753080,4294103,10521578,25786055,63204089,154942532,

%U 379879302,931443529,2284029958,5601114152,13736265904,33688529855,82624915345

%N Number of nX3 0..1 arrays with every element equal to 0, 1, 2, 4, 5 or 7 king-move adjacent elements, with upper left element zero.

%C Column 3 of A299097.

%H R. H. Hardin, <a href="/A299092/b299092.txt">Table of n, a(n) for n = 1..210</a>

%F Empirical: a(n) = 4*a(n-1) -3*a(n-2) +4*a(n-3) -23*a(n-4) +18*a(n-5) -8*a(n-6) +47*a(n-7) -29*a(n-8) +26*a(n-9) -66*a(n-10) +17*a(n-11) -29*a(n-12) +46*a(n-13) -3*a(n-14) +18*a(n-15) -18*a(n-16) for n>17

%e Some solutions for n=5

%e ..0..1..0. .0..1..0. .0..1..0. .0..1..0. .0..1..0. .0..0..0. .0..1..0

%e ..0..0..1. .0..1..1. .1..0..1. .0..0..0. .0..0..0. .1..1..1. .0..0..0

%e ..0..0..1. .0..1..1. .1..0..0. .0..0..0. .1..1..1. .0..0..0. .1..1..1

%e ..1..0..0. .0..1..0. .1..0..0. .0..0..1. .0..0..0. .1..1..1. .1..0..1

%e ..0..1..1. .1..1..0. .0..1..0. .1..0..1. .1..1..1. .0..0..0. .1..1..1

%Y Cf. A299097.

%K nonn

%O 1,1

%A _R. H. Hardin_, Feb 02 2018