The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A299090 Number of "digits" in the binary representation of the multiset of prime factors of n. 8
 0, 1, 1, 2, 1, 1, 1, 2, 2, 1, 1, 2, 1, 1, 1, 3, 1, 2, 1, 2, 1, 1, 1, 2, 2, 1, 2, 2, 1, 1, 1, 3, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 2, 1, 1, 3, 2, 2, 1, 2, 1, 2, 1, 2, 1, 1, 1, 2, 1, 1, 2, 3, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 2, 2, 1, 1, 1, 3, 3, 1, 1, 2, 1, 1, 1, 2, 1, 2, 1, 2, 1, 1, 1, 3, 1, 2, 2, 2, 1, 1, 1, 2, 1 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,4 COMMENTS a(n) is also the binary weight of the largest multiplicity in the multiset of prime factors of n. Any finite multiset m has a unique binary representation as a finite word bin(m) = s_k..s_1 such that: (1) each "digit" s_i is a finite set, (2) the leading term s_k is nonempty, and (3) m = 1*s_1 + 2*s_2 + 4*s_3 + 8*s_4 + ... + 2^(k-1)*s_k where + is multiset union, 1*S = S as a multiset, and n*S = 1*S + (n-1)*S for n > 1. The word bin(m) can be thought of as a finite 2-adic set. For example, bin({1,1,1,1,2,2,3,3,3}) = {1}{2,3}{3}, bin({1,1,1,1,1,2,2,2,2}) = {1,2}{}{1}, bin({1,1,1,1,1,2,2,2,3}) = {1}{2}{1,2,3}. a(n) is the least k such that columns indexed k or greater in A329050 contain no divisors of n. - Peter Munn, Feb 10 2020 LINKS Antti Karttunen, Table of n, a(n) for n = 1..65537 FORMULA a(n) = A070939(A051903(n)), n>1. If m is a set then bin(m) has only one "digit" m; so a(n) = 1 if n is squarefree. If m is of the form n*{x} then bin(m) is obtained by listing the binary digits of n and replacing 0 -> {}, 1 -> {x}; so a(p^n) = binary weight of n. a(n) = A061395(A225546(n)). - Peter Munn, Feb 10 2020 EXAMPLE 36 has prime factors {2,2,3,3} with binary representation {2,3}{} so a(36) = 2. Binary representations of the prime multisets of each positive integer begin: {}, {2}, {3}, {2}{}, {5}, {2,3}, {7}, {2}{2}, {3}{}, {2,5}, {11}, {2}{3}, {13}, {2,7}, {3,5}, {2}{}{}. MATHEMATICA Table[If[n===1, 0, IntegerLength[Max@@FactorInteger[n][[All, 2]], 2]], {n, 100}] PROG (PARI) A051903(n) = if((1==n), 0, vecmax(factor(n)[, 2])); A299090(n) = if(1==n, 0, #binary(A051903(n))); \\ Antti Karttunen, Jul 29 2018 CROSSREFS Cf. A001511, A051903, A052409, A070939, A112798, A329050. Related to A061395 via A225546. Sequence in context: A096309 A185102 A049419 * A046951 A159631 A335428 Adjacent sequences:  A299087 A299088 A299089 * A299091 A299092 A299093 KEYWORD nonn,base AUTHOR Gus Wiseman, Feb 02 2018 EXTENSIONS More terms from Antti Karttunen, Jul 29 2018 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified April 18 19:31 EDT 2021. Contains 343089 sequences. (Running on oeis4.)