%I #4 Jan 31 2018 09:35:12
%S 4,13,20,44,123,343,957,2710,7749,22170,63434,181941,521609,1495695,
%T 4290128,12304541,35291808,101228002,290349737,832808429,2388749945,
%U 6851656946,19652642153,56369797674,161685824712,463764471339
%N Number of nX3 0..1 arrays with every element equal to 0, 1, 2, 4, 5 or 6 king-move adjacent elements, with upper left element zero.
%C Column 3 of A299015.
%H R. H. Hardin, <a href="/A299010/b299010.txt">Table of n, a(n) for n = 1..210</a>
%F Empirical: a(n) = 4*a(n-1) -3*a(n-2) +5*a(n-3) -22*a(n-4) +14*a(n-5) -a(n-6) +24*a(n-7) -a(n-8) -38*a(n-9) +61*a(n-10) -84*a(n-11) +77*a(n-12) -89*a(n-13) +54*a(n-14) -20*a(n-15) +24*a(n-16) for n>17
%e Some solutions for n=5
%e ..0..1..0. .0..1..0. .0..1..0. .0..0..1. .0..0..0. .0..1..0. .0..0..1
%e ..1..0..0. .0..1..0. .1..0..0. .1..1..0. .0..1..0. .1..0..0. .1..0..1
%e ..1..0..0. .0..1..0. .0..0..0. .0..1..1. .0..0..0. .0..0..0. .0..0..1
%e ..1..0..1. .0..1..0. .0..0..1. .1..1..1. .1..1..1. .0..0..1. .0..0..0
%e ..1..0..0. .0..1..0. .0..1..0. .0..0..1. .1..0..1. .1..0..1. .0..1..1
%Y Cf. A299015.
%K nonn
%O 1,1
%A _R. H. Hardin_, Jan 31 2018