login
Number of nX4 0..1 arrays with every element equal to 0, 1, 2, 3, 5 or 6 king-move adjacent elements, with upper left element zero.
1

%I #4 Jan 31 2018 09:24:16

%S 8,88,372,1977,11553,63472,350339,1960512,10931666,60915771,339863732,

%T 1896117726,10577509015,59011882438,329233976176,1836824343961,

%U 10247854122236,57174149141128,318982362376709,1779646767539938

%N Number of nX4 0..1 arrays with every element equal to 0, 1, 2, 3, 5 or 6 king-move adjacent elements, with upper left element zero.

%C Column 4 of A299008.

%H R. H. Hardin, <a href="/A299004/b299004.txt">Table of n, a(n) for n = 1..210</a>

%H R. H. Hardin, <a href="/A299004/a299004.txt">Empirical recurrence of order 65</a>

%F Empirical recurrence of order 65 (see link above)

%e Some solutions for n=5

%e ..0..1..0..1. .0..0..1..0. .0..0..0..1. .0..0..0..0. .0..1..1..1

%e ..0..1..1..1. .0..1..0..0. .1..1..0..0. .1..1..0..1. .1..0..0..1

%e ..0..0..0..1. .0..1..1..1. .1..0..0..1. .0..0..0..1. .0..1..1..0

%e ..0..1..0..1. .0..0..0..0. .0..0..0..0. .1..1..1..0. .1..0..0..1

%e ..1..1..1..0. .1..1..1..1. .0..1..1..0. .0..1..0..0. .1..1..0..1

%Y Cf. A299008.

%K nonn

%O 1,1

%A _R. H. Hardin_, Jan 31 2018