%I #4 Jan 31 2018 09:24:16
%S 8,88,372,1977,11553,63472,350339,1960512,10931666,60915771,339863732,
%T 1896117726,10577509015,59011882438,329233976176,1836824343961,
%U 10247854122236,57174149141128,318982362376709,1779646767539938
%N Number of nX4 0..1 arrays with every element equal to 0, 1, 2, 3, 5 or 6 king-move adjacent elements, with upper left element zero.
%C Column 4 of A299008.
%H R. H. Hardin, <a href="/A299004/b299004.txt">Table of n, a(n) for n = 1..210</a>
%H R. H. Hardin, <a href="/A299004/a299004.txt">Empirical recurrence of order 65</a>
%F Empirical recurrence of order 65 (see link above)
%e Some solutions for n=5
%e ..0..1..0..1. .0..0..1..0. .0..0..0..1. .0..0..0..0. .0..1..1..1
%e ..0..1..1..1. .0..1..0..0. .1..1..0..0. .1..1..0..1. .1..0..0..1
%e ..0..0..0..1. .0..1..1..1. .1..0..0..1. .0..0..0..1. .0..1..1..0
%e ..0..1..0..1. .0..0..0..0. .0..0..0..0. .1..1..1..0. .1..0..0..1
%e ..1..1..1..0. .1..1..1..1. .0..1..1..0. .0..1..0..0. .1..1..0..1
%Y Cf. A299008.
%K nonn
%O 1,1
%A _R. H. Hardin_, Jan 31 2018