login
A298877
Solution (a(n)) of the complementary equation in Comments.
2
1, 6, 15, 29, 50, 79, 117, 165, 224, 295, 379, 477, 591, 722, 871, 1039, 1227, 1436, 1667, 1921, 2199, 2502, 2831, 3187, 3571, 3985, 4430, 4907, 5417, 5961, 6540, 7155, 7807, 8497, 9226, 9995, 10805, 11657, 12552, 13491, 14475, 15505, 16582, 17707, 18881
OFFSET
0,2
COMMENTS
Define sequences a(n) and b(n) recursively, starting with a(0) = 1, b(0) = 2:
b(n) = least new;
a(n) = a(n-1) + b(n) + b(n-1) + ... + b(0),
where "least new k" means the least positive integer not yet placed.
EXAMPLE
b(1) = least not in {a(0),b(0)} = 3;
a(1) = a(0) + b(1) + b(0) = 1 + 3 + 2 = 6.
MATHEMATICA
z = 1000;
mex[list_, start_] := (NestWhile[# + 1 &, start, MemberQ[list, #] &]);
c = 1; a = {1}; b = {2}; x = {1};
Do[AppendTo[b, mex[Flatten[{a, b}], 1]];
AppendTo[x, 1];
AppendTo[a, c Last[a] + (Reverse[x] b // Total)], {z}]
Take[a, 30]
(* Peter J. C. Moses, May 10 2018 *)
CROSSREFS
Sequence in context: A180953 A200184 A005286 * A229063 A025212 A024972
KEYWORD
nonn,easy
AUTHOR
Clark Kimberling, May 12 2018
STATUS
approved