This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A298854 Characteristic polynomials of Jacobi coordinates. Triangle read by rows, T(n, k) for 0 <= k <= n. 1
 1, 1, 1, 2, 3, 2, 6, 11, 11, 6, 24, 50, 61, 50, 24, 120, 274, 379, 379, 274, 120, 720, 1764, 2668, 3023, 2668, 1764, 720, 5040, 13068, 21160, 26193, 26193, 21160, 13068, 5040, 40320, 109584, 187388, 248092, 270961, 248092, 187388, 109584, 40320, 362880, 1026576, 1836396, 2565080, 2995125, 2995125, 2565080, 1836396, 1026576, 362880 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 0,4 COMMENTS This is just a different normalization of A223256 and A223257. LINKS FORMULA P(0)=1 and P(n) = n * (x + 1) * P(n - 1) - (n - 1)^2 * x * P(n - 2). EXAMPLE For n = 3, the polynomial is 6*x^3 + 11*x^2 + 11*x + 6. The first few polynomials, as a table: [  1], [  1,   1], [  2,   3,   2], [  6,  11,  11,   6], [ 24,  50,  61,  50,  24], [120, 274, 379, 379, 274, 120] PROG (Sage) @cached_function def poly(n):     x = polygen(ZZ, 'x')     if n < 0:         return x.parent().zero()     elif n == 0:         return x.parent().one()     else:         return n * (x + 1) * poly(n - 1) - (n - 1)**2 * x * poly(n - 2) A298854_row = lambda n: list(poly(n)) for n in (0..7): print(A298854_row(n)) CROSSREFS Closely related to A223256 and A223257. Row sums are A002720. Leftmost and rightmost columns are A000142. Alternating row sums are A177145. Absolute value of evaluation at x = exp(2*i*Pi/3) is A080171. Sequence in context: A110777 A087454 A059446 * A188881 A143806 A276551 Adjacent sequences:  A298851 A298852 A298853 * A298855 A298856 A298857 KEYWORD tabl,nonn,easy,changed AUTHOR F. Chapoton, Jan 27 2018 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified October 16 05:35 EDT 2019. Contains 328044 sequences. (Running on oeis4.)