%I #4 Jan 27 2018 07:47:02
%S 0,6,21,110,1045,7322,60497,482261,3886764,31419679,253669718,
%T 2050750767,16574522884,133980763315,1083047418757,8754987461582,
%U 70773060189635,572110944739376,4624804772439213,37385796035240692,302217747405919419
%N Number of nX4 0..1 arrays with every element equal to 2, 3, 4, 5 or 8 king-move adjacent elements, with upper left element zero.
%C Column 4 of A298841.
%H R. H. Hardin, <a href="/A298837/b298837.txt">Table of n, a(n) for n = 1..210</a>
%F Empirical: a(n) = 9*a(n-1) +17*a(n-2) -195*a(n-3) -301*a(n-4) +2160*a(n-5) +2724*a(n-6) -12908*a(n-7) -15160*a(n-8) +47906*a(n-9) +54649*a(n-10) -121788*a(n-11) -119168*a(n-12) +219680*a(n-13) +109795*a(n-14) -358602*a(n-15) +332162*a(n-16) +436116*a(n-17) -1047261*a(n-18) -907623*a(n-19) +1904805*a(n-20) +943907*a(n-21) -401499*a(n-22) -3080376*a(n-23) +756838*a(n-24) +2344863*a(n-25) -422428*a(n-26) -154363*a(n-27) -1739231*a(n-28) +1061307*a(n-29) +880883*a(n-30) -496873*a(n-31) -39576*a(n-32) -190649*a(n-33) +102350*a(n-34) -69812*a(n-35) -105271*a(n-36) +28788*a(n-37) +64379*a(n-38) +25435*a(n-39) -45832*a(n-40) -6076*a(n-41) +16110*a(n-42) +1038*a(n-43) -3416*a(n-44) +408*a(n-45) for n>48
%e Some solutions for n=7
%e ..0..0..1..1. .0..0..1..1. .0..0..0..0. .0..0..0..0. .0..0..1..1
%e ..0..1..1..0. .1..0..0..1. .0..0..0..0. .0..1..0..0. .0..1..1..1
%e ..0..0..0..0. .1..1..0..1. .0..0..0..0. .1..0..1..1. .1..0..0..0
%e ..1..1..1..1. .1..1..1..1. .1..1..1..1. .1..1..1..1. .1..0..0..0
%e ..1..1..1..1. .0..0..0..0. .1..0..1..1. .0..0..0..0. .1..0..0..0
%e ..1..1..1..1. .0..0..0..0. .0..0..0..1. .0..0..0..0. .0..1..1..1
%e ..1..1..1..1. .0..0..0..0. .0..0..1..1. .0..0..0..0. .0..0..1..1
%Y Cf. A298841.
%K nonn
%O 1,2
%A _R. H. Hardin_, Jan 27 2018