The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A298806 Growth series for group with presentation < S, T : S^3 = T^6 = (S*T)^6 = 1 >. 1
 1, 4, 10, 25, 60, 148, 358, 869, 2106, 5110, 12396, 30070, 72942, 176939, 429214, 1041172, 2525640, 6126607, 14861710, 36051016, 87451296, 212136296, 514592810, 1248281249, 3028037016, 7345306340, 17817987338, 43222250797, 104847025002, 254334247970, 616955127612, 1496588180810, 3630371290710 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 LINKS Colin Barker, Table of n, a(n) for n = 0..1000 Index entries for linear recurrences with constant coefficients, signature (3,-2,1,2,-3,2,1,-2,3,-1). FORMULA G.f.: (x^10 + x^9 + 2*x^7 - x^6 + 3*x^5 - x^4 + 2*x^3 + x + 1)/(x^10 - 3*x^9 + 2*x^8 - x^7 - 2*x^6 + 3*x^5 - 2*x^4 - x^3 + 2*x^2 - 3*x + 1). a(n) = 3*a(n-1) - 2*a(n-2) + a(n-3) + 2*a(n-4) - 3*a(n-5) + 2*a(n-6) + a(n-7) - 2*a(n-8) + 3*a(n-9) - a(n-10) for n>10. - Colin Barker, Feb 06 2018 PROG (MAGMA) See Magma program in A298805. (PARI) Vec((1 - x + x^2)*(1 + x + x^2)*(1 + x - x^2 + x^3 - x^4 + x^5 + x^6) / (1 - 3*x + 2*x^2 - x^3 - 2*x^4 + 3*x^5 - 2*x^6 - x^7 + 2*x^8 - 3*x^9 + x^10) + O(x^40)) \\ Colin Barker, Feb 06 2018 CROSSREFS Cf. A008579, A298802, A298805. Sequence in context: A279101 A276599 A281867 * A033539 A020748 A021004 Adjacent sequences:  A298803 A298804 A298805 * A298807 A298808 A298809 KEYWORD nonn,easy AUTHOR John Cannon and N. J. A. Sloane, Feb 04 2018 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified August 10 13:30 EDT 2020. Contains 336381 sequences. (Running on oeis4.)