login
A298739
First differences of A000001 (the number of groups of order n).
1
0, 0, 1, -1, 1, -1, 4, -3, 0, -1, 4, -4, 1, -1, 13, -13, 4, -4, 4, -3, 0, -1, 14, -13, 0, 3, -1, -3, 3, -3, 50, -50, 1, -1, 13, -13, 1, 0, 12, -13, 5, -5, 3, -2, 0, -1, 51, -50, 3, -4, 4, -4, 14, -13, 11, -11, 0, -1, 12, -12, 1, 2, 263, -266, 3, -3
OFFSET
1,7
LINKS
Muniru A Asiru, Table of n, a(n) for n = 1..2046 [a(1023) and a(1024) corrected by Andrey Zabolotskiy]
H. U. Besche, B. Eick and E. A. O'Brien, A Millennium Project: Constructing Small Groups, Internat. J. Algebra and Computation, 12 (2002), 623-644.
Gordon Royle, Numbers of Small Groups [dead link]
FORMULA
a(n) = A000001(n+1) - A000001(n).
EXAMPLE
There is only one group of order 1 and of order 2, so a(1) = A000001(2) - A000001(1) = 1 - 1 = 0.
There are 2 groups of order 4 and 3 is a cyclic number, so a(3) = A000001(4) - A000001(3) = 2 - 1 = 1.
MAPLE
with(GroupTheory): seq((NumGroups(n+1) - NumGroups(n), n=1..500));
MATHEMATICA
(* Please note that, as of version 14, the Mathematica function FiniteGroupCount returns a wrong value for n = 1024 (49487365422 instead of 49487367289). *)
Differences[FiniteGroupCount[Range[100]]] (* Paolo Xausa, Mar 22 2024 *)
PROG
(GAP) List([1..700], n -> NumberSmallGroups(n+1) - NumberSmallGroups(n));
CROSSREFS
Cf. A000001 (Number of groups of order n).
Sequence in context: A056969 A335532 A131106 * A346366 A325011 A294188
KEYWORD
sign
AUTHOR
Muniru A Asiru, Jan 25 2018
STATUS
approved