

A298638


Numbers k such that the digital sum of k and the digital root of k have opposite parity.


3



19, 28, 29, 37, 38, 39, 46, 47, 48, 49, 55, 56, 57, 58, 59, 64, 65, 66, 67, 68, 69, 73, 74, 75, 76, 77, 78, 79, 82, 83, 84, 85, 86, 87, 88, 89, 91, 92, 93, 94, 95, 96, 97, 98, 99, 109, 118, 119, 127, 128, 129, 136, 137, 138, 139, 145, 146, 147, 148, 149, 154, 155
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


COMMENTS

Numbers k such that A113217(k) <> A179081(k).
Complement of A298639.
Agrees with A291884 until a(46): a(46) = 109 is not in that sequence.


LINKS

J. Stauduhar, Table of n, a(n) for n = 1..10000


MATHEMATICA

Select[Range[145], EvenQ@ Total@ IntegerDigits@ # != EvenQ@ NestWhile[Total@ IntegerDigits@ # &, #, # > 9 &] &] (* Michael De Vlieger, Feb 03 2018 *)


PROG

(PYTHON)
#Digital sum of n.
def ds(n):
..if n < 10:
....return n
..return n % 10 + ds(n//10)
def A298638(term_count):
..seq = []
..m = 0
..n = 1
..while n <= term_count:
....s = ds(m)
....r = ((m  1) % 9) + 1 if m else 0
....if s % 2 != r % 2:
......seq.append(m)
......n += 1
....m += 1
..return seq
print(A298638(100))
(PARI) isok(n) = sumdigits(n) % 2 != if (n, ((n1)%9+1) % 2, 0); \\ Michel Marcus, Mar 01 2018


CROSSREFS

Cf. A007953, A010888, A113217, A179081.
Cf. A298639, A291884.
Sequence in context: A069529 A138335 A304367 * A291884 A173639 A091448
Adjacent sequences: A298635 A298636 A298637 * A298639 A298640 A298641


KEYWORD

nonn,easy,base


AUTHOR

J. Stauduhar, Jan 23 2018


STATUS

approved



