login
A298543
Number of nX4 0..1 arrays with every element equal to 1, 2, 3, 4 or 7 king-move adjacent elements, with upper left element zero.
1
2, 61, 588, 4771, 41762, 367315, 3215618, 28178880, 246983338, 2164554841, 18970525357, 166262705076, 1457166433082, 12770963458496, 111927910337221, 980964098035827, 8597413843575416, 75349879370232982, 660385138424897718
OFFSET
1,1
COMMENTS
Column 4 of A298547.
LINKS
FORMULA
Empirical: a(n) = 8*a(n-1) +6*a(n-2) +36*a(n-3) -199*a(n-4) -489*a(n-5) -607*a(n-6) +190*a(n-7) +2704*a(n-8) +3152*a(n-9) +1937*a(n-10) -4117*a(n-11) -883*a(n-12) -1120*a(n-13) +4348*a(n-14) -5819*a(n-15) -5356*a(n-16) +140*a(n-17) +908*a(n-18) -6185*a(n-19) -1785*a(n-20) +9257*a(n-21) +3188*a(n-22) -3046*a(n-23) +1121*a(n-24) +645*a(n-25) -4057*a(n-26) +101*a(n-27) +2424*a(n-28) -327*a(n-29) -420*a(n-30) +312*a(n-31) -14*a(n-32) -64*a(n-33) -6*a(n-35) +2*a(n-36) for n>39
EXAMPLE
Some solutions for n=6
..0..0..1..0. .0..0..1..0. .0..0..1..0. .0..0..1..0. .0..0..1..0
..0..1..1..0. .0..1..1..0. .0..1..1..0. .0..1..1..0. .0..1..1..0
..0..1..0..1. .0..1..0..0. .0..1..0..1. .0..1..0..0. .0..1..0..1
..1..0..0..0. .1..0..1..1. .1..0..0..1. .0..1..1..0. .0..1..1..1
..0..1..1..0. .1..0..1..1. .0..1..1..0. .1..0..1..0. .0..0..0..0
..1..0..0..0. .0..0..0..0. .0..1..0..1. .1..0..0..1. .0..1..1..1
CROSSREFS
Cf. A298547.
Sequence in context: A172230 A059004 A297919 * A298333 A299224 A037065
KEYWORD
nonn
AUTHOR
R. H. Hardin, Jan 21 2018
STATUS
approved