login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A298473 a(n) = n * lambda(n) * 2^omega(n) for n >= 1. 0
1, -4, -6, 8, -10, 24, -14, -16, 18, 40, -22, -48, -26, 56, 60, 32, -34, -72, -38, -80, 84, 88, -46, 96, 50, 104, -54, -112, -58, -240, -62, -64, 132, 136, 140, 144, -74, 152, 156, 160, -82, -336, -86, -176, -180, 184, -94, -192, 98, -200, 204, -208, -106, 216, 220, 224, 228, 232, -118, 480 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

The sequence b(n) = abs(a(n)) = n * 2^omega(n) for n>=1 is multiplicative with b(p^e) = 2*p^e (p prime, e > 0) and is the Dirichlet inverse of a(n). The Dirichlet g.f. of b(n) is: (zeta(s-1))^2/zeta(2*s-2). For omega(n) and lambda(n) see A001221 and A008836, respectively.

LINKS

Table of n, a(n) for n=1..60.

FORMULA

Multiplicative with a(p^e) = 2*(-p)^e (p prime, e>0).

Dirichlet inverse of abs(a(n)).

Dirichlet g.f.: zeta(2*s-2)/(zeta(s-1))^2.

Sum_{d|n} A000290(d)*a(n/d) = n*A060648(n).

Sum_{d|n} A078439(d)*a(n/d) = A008683(n).

EXAMPLE

a(6) = a(2)*a(3) = (-4)*(-6) = 24 = 6*1*2^2;

a(8) = a(2^3) = 2*(-2)^3 = -16 = 8*(-1)*2^1.

MATHEMATICA

Array[# (-1)^PrimeOmega[#]*2^PrimeNu[#] &, 60] (* Michael De Vlieger, Jan 20 2018 *)

PROG

(PARI) a(n) = n*(-1)^bigomega(n)*2^omega(n); \\ Michel Marcus, Jan 20 2018

CROSSREFS

Cf. A000290, A001221, A001222, A008683, A008836, A060648, A078439.

Sequence in context: A289424 A050835 A294243 * A054284 A295287 A079254

Adjacent sequences:  A298470 A298471 A298472 * A298474 A298475 A298476

KEYWORD

sign,mult

AUTHOR

Werner Schulte, Jan 19 2018

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified April 24 22:26 EDT 2019. Contains 322446 sequences. (Running on oeis4.)