login
Numbers n such that n and n-1 are both nontrivial binomial coefficients.
0

%I #15 Feb 20 2018 14:14:54

%S 21,36,56,253,496,561,1771,2926,3655,5985,26335,2895621,2919736,

%T 6471003,21474181,48792381,346700278,402073903,1260501229261,

%U 12864662659597529

%N Numbers n such that n and n-1 are both nontrivial binomial coefficients.

%C Nontrivial here means binomial(r,s) with 2 <= s <= r-2 (or the sequence would be uninteresting).

%C Blokhuis et al. show that the values given are complete up to 10^30, and conjecture that there are no more.

%H Aart Blokhuis, Andries Brouwer, Benne de Weger, <a href="http://math.colgate.edu/~integers/vol17.html">Binomial collisions and near collisions</a>, INTEGERS, Volume 17, Article A64, 2017 (also available as <a href="https://arxiv.org/abs/1707.06893">arXiv:1707.06893 [math.NT]</a>).

%e binomial(6,3)=20 and binomial(7,2)=binomial(7,5)=21 are the smallest adjacent pair, so a(1)=21.

%t nmax = 1000; t = Table[Binomial[n, k], {n, 4, nmax}, {k, 2, Floor[n/2]}] // Flatten // Sort // DeleteDuplicates; Select[Split[t, #2 == #1+1&], Length[#] > 1&][[All, 2]] (* _Jean-François Alcover_, Feb 20 2018 *)

%Y Cf. A003015.

%K nonn

%O 1,1

%A _Christopher E. Thompson_, Jan 19 2018