

A298472


Numbers n such that n and n1 are both nontrivial binomial coefficients.


0



21, 36, 56, 253, 496, 561, 1771, 2926, 3655, 5985, 26335, 2895621, 2919736, 6471003, 21474181, 48792381, 346700278, 402073903, 1260501229261, 12864662659597529
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


COMMENTS

Nontrivial here means binomial(r,s) with 2 <= s <= r2 (or the sequence would be uninteresting).
Blokhuis et al. show that the values given are complete up to 10^30, and conjecture that there are no more.


LINKS

Table of n, a(n) for n=1..20.
Aart Blokhuis, Andries Brouwer, Benne de Weger, Binomial collisions and near collisions, INTEGERS, Volume 17, Article A64, 2017 (also available as arXiv:1707.06893 [math.NT]).


EXAMPLE

binomial(6,3)=20 and binomial(7,2)=binomial(7,5)=21 are the smallest adjacent pair, so a(1)=21.


MATHEMATICA

nmax = 1000; t = Table[Binomial[n, k], {n, 4, nmax}, {k, 2, Floor[n/2]}] // Flatten // Sort // DeleteDuplicates; Select[Split[t, #2 == #1+1&], Length[#] > 1&][[All, 2]] (* JeanFrançois Alcover, Feb 20 2018 *)


CROSSREFS

Cf. A003015.
Sequence in context: A155710 A001491 A112352 * A168513 A067598 A043683
Adjacent sequences: A298469 A298470 A298471 * A298473 A298474 A298475


KEYWORD

nonn


AUTHOR

Christopher E. Thompson, Jan 19 2018


STATUS

approved



