%I #4 Jan 19 2018 08:34:47
%S 0,4,0,11,26,46,204,696,1493,5880,18994,49941,174020,552946,1590917,
%T 5237693,16486804,49511202,158599036,497008665,1523240497,4815373712,
%U 15059431049,46604564297,146391271270,457401829113,1422103399094
%N Number of nX3 0..1 arrays with every element equal to 1, 3, 4, 5 or 6 king-move adjacent elements, with upper left element zero.
%C Column 3 of A298454.
%H R. H. Hardin, <a href="/A298449/b298449.txt">Table of n, a(n) for n = 1..210</a>
%F Empirical: a(n) = a(n-1) +4*a(n-2) +21*a(n-3) -16*a(n-4) -60*a(n-5) -83*a(n-6) +55*a(n-7) +144*a(n-8) +125*a(n-9) +67*a(n-10) -98*a(n-11) -105*a(n-12) -92*a(n-13) +37*a(n-14) +11*a(n-15) -7*a(n-16) +3*a(n-17) for n>18
%e Some solutions for n=7
%e ..0..1..1. .0..1..1. .0..0..0. .0..0..0. .0..1..0. .0..0..0. .0..0..1
%e ..0..1..1. .0..1..1. .0..0..0. .0..0..0. .0..1..0. .0..0..0. .0..0..1
%e ..1..1..1. .1..1..1. .1..0..1. .1..1..0. .1..1..1. .0..1..1. .1..0..0
%e ..1..0..0. .1..0..0. .1..0..1. .0..0..0. .1..1..0. .0..1..1. .1..0..0
%e ..1..0..0. .1..0..0. .1..1..1. .0..0..0. .1..1..0. .0..0..0. .0..0..0
%e ..0..0..1. .1..1..1. .1..1..0. .1..0..1. .0..0..0. .0..1..1. .1..0..1
%e ..0..0..1. .1..1..1. .1..1..0. .1..0..1. .0..0..0. .0..1..1. .1..0..1
%Y Cf. A298454.
%K nonn
%O 1,2
%A _R. H. Hardin_, Jan 19 2018