The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A298435 Expansion of Product_{k>=1} 1/(1 - x^(k*(k+1)/2))^2. 4
 1, 2, 3, 6, 9, 12, 20, 28, 36, 52, 70, 88, 120, 156, 192, 250, 318, 386, 488, 606, 727, 900, 1101, 1308, 1590, 1916, 2257, 2706, 3225, 3768, 4465, 5270, 6117, 7178, 8399, 9686, 11274, 13094, 15020, 17352, 20017, 22846, 26230, 30080, 34175, 39010, 44500, 50346, 57184, 64914, 73156 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS Number of partitions of n into triangular numbers of 2 kinds. Self-convolution of A007294. LINKS Vaclav Kotesovec, Table of n, a(n) for n = 0..10000 FORMULA G.f.: Product_{k>=1} 1/(1 - x^(k*(k+1)/2))^2. a(n) ~ exp(3*(Pi/2)^(1/3) * Zeta(3/2)^(2/3) * n^(1/3)) * Zeta(3/2)^(5/3) / (2^(29/6) * sqrt(3) * Pi^(5/3) * n^(13/6)). - Vaclav Kotesovec, Apr 08 2018 EXAMPLE a(3) = 6 because we have [3a], [3b], [1a, 1a, 1a], [1a, 1a, 1b], [1a, 1b, 1b] and [1b, 1b, 1b]. MATHEMATICA nmax = 50; CoefficientList[Series[Product[1/(1 - x^(k (k + 1)/2))^2, {k, 1, nmax}], {x, 0, nmax}], x] CROSSREFS Cf. A000217, A000712, A007294, A279225. Sequence in context: A144677 A309677 A058616 * A261539 A325552 A271882 Adjacent sequences:  A298432 A298433 A298434 * A298436 A298437 A298438 KEYWORD nonn AUTHOR Ilya Gutkovskiy, Jan 19 2018 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified January 25 23:04 EST 2020. Contains 331270 sequences. (Running on oeis4.)