login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

T(n,k)=Number of nXk 0..1 arrays with every element equal to 1, 2, 3, 5 or 6 king-move adjacent elements, with upper left element zero.
7

%I #4 Jan 18 2018 07:47:32

%S 0,1,1,1,4,1,2,18,18,2,3,52,56,52,3,5,174,223,223,174,5,8,604,849,996,

%T 849,604,8,13,2048,3387,5180,5180,3387,2048,13,21,6948,13075,26926,

%U 49850,26926,13075,6948,21,34,23652,51006,135226,384118,384118,135226,51006

%N T(n,k)=Number of nXk 0..1 arrays with every element equal to 1, 2, 3, 5 or 6 king-move adjacent elements, with upper left element zero.

%C Table starts

%C ..0.....1......1.......2.........3..........5............8............13

%C ..1.....4.....18......52.......174........604.........2048..........6948

%C ..1....18.....56.....223.......849.......3387........13075.........51006

%C ..2....52....223.....996......5180......26926.......135226........690918

%C ..3...174....849....5180.....49850.....384118......2837337......23616114

%C ..5...604...3387...26926....384118....3935913.....38706835.....445387553

%C ..8..2048..13075..135226...2837337...38706835....509195874....8032883165

%C .13..6948..51006..690918..23616114..445387553...8032883165..190487814086

%C .21.23652.199243.3547086.189866553.4869394793.118750882425.4054091346048

%H R. H. Hardin, <a href="/A298389/b298389.txt">Table of n, a(n) for n = 1..180</a>

%F Empirical for column k:

%F k=1: a(n) = a(n-1) +a(n-2)

%F k=2: a(n) = 4*a(n-1) -2*a(n-2) +2*a(n-3) -6*a(n-4) -4*a(n-5) for n>6

%F k=3: [order 20] for n>21

%F k=4: [order 69] for n>71

%e Some solutions for n=5 k=4

%e ..0..1..0..1. .0..0..0..1. .0..0..1..0. .0..1..0..1. .0..0..1..1

%e ..1..0..1..0. .1..1..1..0. .0..1..1..0. .1..0..0..1. .1..0..1..1

%e ..1..0..1..0. .1..0..0..1. .1..0..0..0. .1..0..0..0. .0..1..1..1

%e ..1..1..0..1. .0..1..0..1. .0..1..1..1. .1..0..0..1. .1..0..1..1

%e ..1..0..1..1. .0..0..1..1. .1..0..0..0. .0..1..0..1. .0..0..1..1

%Y Column 1 is A000045(n-1).

%Y Column 2 is A297945.

%K nonn,tabl

%O 1,5

%A _R. H. Hardin_, Jan 18 2018