login
A298377
Number of n X 3 0..1 arrays with every element equal to 0, 2, 3, 5 or 6 king-move adjacent elements, with upper left element zero.
1
1, 7, 6, 18, 30, 87, 200, 522, 1421, 3805, 10578, 29465, 82498, 232593, 656577, 1858073, 5265011, 14930674, 42368708, 120274026, 341518697, 969915776, 2754886812, 7825418473, 22229715609, 63150286472, 179401787689, 509665128216
OFFSET
1,2
COMMENTS
Column 3 of A298382.
LINKS
FORMULA
Empirical: a(n) = 3*a(n-1) +3*a(n-2) -6*a(n-3) -16*a(n-4) +6*a(n-5) +23*a(n-6) +16*a(n-7) -13*a(n-8) -40*a(n-9) -50*a(n-10) +14*a(n-11) +106*a(n-12) +53*a(n-13) -18*a(n-14) -38*a(n-15) -34*a(n-16) -8*a(n-17) for n>18.
EXAMPLE
Some solutions for n=7
..0..0..0. .0..0..1. .0..1..1. .0..1..0. .0..0..0. .0..1..0. .0..0..0
..1..0..1. .0..1..1. .1..1..0. .0..0..0. .0..0..0. .0..0..0. .1..0..1
..1..1..1. .0..1..0. .0..1..1. .0..1..0. .1..1..1. .0..1..0. .1..1..1
..1..0..1. .0..0..0. .1..1..0. .1..1..0. .0..1..0. .1..1..0. .1..0..1
..0..1..0. .0..1..0. .0..0..0. .0..1..0. .1..1..1. .0..1..0. .1..0..0
..0..0..0. .0..1..1. .0..1..0. .0..0..0. .1..0..1. .0..0..0. .1..1..1
..0..1..0. .0..0..1. .1..1..1. .1..0..1. .0..0..0. .0..1..0. .1..0..1
CROSSREFS
Cf. A298382.
Sequence in context: A099255 A198460 A215334 * A299244 A249114 A275372
KEYWORD
nonn
AUTHOR
R. H. Hardin, Jan 18 2018
STATUS
approved