login
A298374
Expansion of e.g.f. 1/(1 - x)^exp(-x).
5
1, 1, 0, 0, 6, 15, 65, 595, 4004, 32865, 322307, 3316511, 37845214, 471644173, 6319617369, 91114344217, 1404670896264, 23050054222177, 401305630237239, 7387282161642715, 143360257370842146, 2925289119525173741, 62612350725688075941, 1402681525332544374325
OFFSET
0,5
COMMENTS
Exponential transform of A002741.
FORMULA
a(n) ~ n! * n^(exp(-1)-1) / Gamma(exp(-1)). - Vaclav Kotesovec, May 04 2018
EXAMPLE
1/(1 - x)^exp(-x) = 1 + x/1! + 6*x^4/4! + 15*x^5/5! + 65*x^6/6! + 595*x^7/7! + ...
MAPLE
a:=series(1/(1-x)^exp(-x), x=0, 24): seq(n!*coeff(a, x, n), n=0..23); # Paolo P. Lava, Mar 26 2019
MATHEMATICA
nmax = 23; CoefficientList[Series[1/(1 - x)^Exp[-x], {x, 0, nmax}], x] Range[0, nmax]!
PROG
(PARI) my(N=30, x='x+O('x^N)); Vec(serlaplace(1/(1-x)^exp(-x))) \\ Seiichi Manyama, May 03 2022
CROSSREFS
KEYWORD
nonn
AUTHOR
Ilya Gutkovskiy, Jan 18 2018
STATUS
approved