%I #13 Feb 11 2018 12:54:14
%S 1,1,1,2,5,14,50,233,1249,7595,49566,339712,2405167,17412878,
%T 127855172,947394711
%N a(n) is the number of maximal simple planar graphs of size n that admit a 2-queue layout.
%C Computed by an exhaustive search.
%D S. Pupyrev, Mixed Linear Layouts of Planar Graphs, International Symposium on Graph Drawing and Network Visualization (GD 2017).
%H Gunnar Brinkmann and Brendan McKay, <a href="http://users.cecs.anu.edu.au/~bdm/plantri">Plantri and fullgen</a>, programs for generation of certain types of planar graph.
%H S. Pupyrev, <a href="https://arxiv.org/abs/1709.00285">Mixed Linear Layouts of Planar Graphs</a>, arXiv:1709.00285 [cs.CG], 2017-2018.
%H Wikipedia, <a href="https://en.wikipedia.org/wiki/Queue_number">Queue number</a>.
%e For n <= 13, all maximal simple planar graphs admit a 2-queue layout; hence, the values are the same as in A000109.
%Y Cf. A000109.
%K nonn,more
%O 3,4
%A _Sergey Pupyrev_, Jan 17 2018