%I #6 Apr 26 2022 06:45:06
%S 1,2,3,8,14,30,58,102,190,350,598,1050,1838,3078,5266,8942,14806,
%T 24798,41442,68078,112598,185942,303806,498690,817302,1330798,2172898,
%U 3545138,5759478,9372694,15244770,24730062,40160774,65194642,105659222,171352554,277829078
%N a(n) = a(n-1) + a(n-2) + a([2n/3]), where a(0) = 1, a(1) = 2, a(2) = 3.
%C a(n)/a(n-1) -> (1 + sqrt(5))/2, the golden ratio (A001622), so that (a(n)) has the growth rate of the Fibonacci numbers (A000045). See A298338 for a guide to related sequences.
%H Clark Kimberling, <a href="/A298343/b298343.txt">Table of n, a(n) for n = 0..1000</a>
%p A298343 := proc(n)
%p option remember ;
%p if n <=2 then
%p n+1 ;
%p else
%p procname(n-1)+procname(n-2)+procname(floor(2*n/3)) ;
%p end if;
%p end proc:
%p seq(A298343(n),n=0..80) ; # _R. J. Mathar_, Apr 26 2022
%t a[0] = 1; a[1] = 2; a[2] = 3;
%t a[n_] := a[n] = a[n - 1] + a[n - 2] + a[Floor[2n/3]];
%t Table[a[n], {n, 0, 30}] (* A298343 *)
%Y Cf. A001622, A000045, A298338.
%K nonn,easy
%O 0,2
%A _Clark Kimberling_, Feb 09 2018