login
Number of nX4 0..1 arrays with every element equal to 1, 2, 3, 4 or 6 king-move adjacent elements, with upper left element zero.
2

%I #4 Jan 17 2018 08:21:11

%S 2,61,628,5663,51588,479767,4442111,41117169,380674402,3524440354,

%T 32629942910,302095307118,2796869144375,25894059182487,

%U 239733154709793,2219504791251324,20548686747464721,190244475734918356

%N Number of nX4 0..1 arrays with every element equal to 1, 2, 3, 4 or 6 king-move adjacent elements, with upper left element zero.

%C Column 4 of A298337.

%H R. H. Hardin, <a href="/A298333/b298333.txt">Table of n, a(n) for n = 1..210</a>

%F Empirical: a(n) = 8*a(n-1) +9*a(n-2) +58*a(n-3) -205*a(n-4) -806*a(n-5) -1667*a(n-6) -168*a(n-7) +10726*a(n-8) +20569*a(n-9) +27377*a(n-10) -36414*a(n-11) -86432*a(n-12) -134644*a(n-13) +33014*a(n-14) +150927*a(n-15) +162099*a(n-16) +268427*a(n-17) +755901*a(n-18) +1746195*a(n-19) +1584933*a(n-20) +1271803*a(n-21) +1116808*a(n-22) +1166969*a(n-23) +1028223*a(n-24) -492968*a(n-25) -1216579*a(n-26) -1247086*a(n-27) -1348709*a(n-28) -1294645*a(n-29) -1165601*a(n-30) -700591*a(n-31) -202243*a(n-32) +276724*a(n-33) +272534*a(n-34) +280471*a(n-35) +206269*a(n-36) +165172*a(n-37) +53877*a(n-38) -3283*a(n-39) -13090*a(n-40) -64*a(n-41) -3382*a(n-42) -3136*a(n-43) +1172*a(n-44) +490*a(n-45) +292*a(n-46) -131*a(n-47) +6*a(n-48) for n>50

%e Some solutions for n=5

%e ..0..1..1..0. .0..0..1..1. .0..1..1..0. .0..1..1..1. .0..0..0..1

%e ..0..0..1..0. .0..0..0..0. .0..1..1..0. .1..0..1..1. .0..0..1..1

%e ..1..0..0..0. .0..1..0..1. .0..0..0..0. .1..1..0..1. .0..1..0..1

%e ..0..1..1..1. .0..1..0..1. .0..1..1..0. .0..0..1..0. .0..1..0..0

%e ..1..1..0..0. .1..0..0..1. .1..1..0..1. .0..0..1..0. .0..0..1..0

%Y Cf. A298337.

%K nonn

%O 1,1

%A _R. H. Hardin_, Jan 17 2018