login
A298287
T(n,k)=Number of nXk 0..1 arrays with every element equal to 0, 1, 2, 3 or 6 king-move adjacent elements, with upper left element zero.
7
1, 2, 2, 4, 8, 4, 8, 25, 25, 8, 16, 85, 70, 85, 16, 32, 286, 205, 205, 286, 32, 64, 969, 614, 649, 614, 969, 64, 128, 3281, 1860, 2151, 2151, 1860, 3281, 128, 256, 11114, 5631, 7006, 8264, 7006, 5631, 11114, 256, 512, 37649, 17034, 22768, 29673, 29673, 22768
OFFSET
1,2
COMMENTS
Table starts
...1.....2.....4......8......16......32.......64.......128........256
...2.....8....25.....85.....286.....969.....3281.....11114......37649
...4....25....70....205.....614....1860.....5631.....17034......51507
...8....85...205....649....2151....7006....22768.....73751.....238775
..16...286...614...2151....8264...29673...104357....369220....1307146
..32...969..1860...7006...29673..121368...484412...1948367....7872325
..64..3281..5631..22768..104357..484412..2195114..10198130...48049615
.128.11114.17034..73751..369220.1948367.10198130..55665676..310280107
.256.37649.51507.238775.1307146.7872325.48049615.310280107.2065512284
LINKS
FORMULA
Empirical for column k:
k=1: a(n) = 2*a(n-1)
k=2: a(n) = 3*a(n-1) +a(n-2) +2*a(n-3) -2*a(n-4) -4*a(n-5)
k=3: [order 11] for n>12
k=4: [order 24] for n>27
EXAMPLE
Some solutions for n=6 k=4
..0..0..0..0. .0..1..1..0. .0..0..1..1. .0..1..0..1. .0..1..1..1
..1..1..1..1. .1..0..0..1. .0..1..0..0. .0..1..0..1. .0..0..1..0
..0..0..0..0. .1..1..1..1. .0..1..0..1. .0..1..0..1. .1..1..1..1
..0..1..1..0. .0..0..0..0. .1..1..0..1. .1..0..1..0. .0..0..0..0
..1..0..0..1. .1..1..1..1. .0..1..0..1. .1..0..1..0. .1..0..1..1
..1..1..1..1. .1..0..0..1. .0..1..0..1. .1..0..0..1. .0..0..0..1
CROSSREFS
Column 1 is A000079(n-1).
Column 2 is A281338.
Sequence in context: A240484 A240636 A281344 * A299359 A299180 A299942
KEYWORD
nonn,tabl
AUTHOR
R. H. Hardin, Jan 16 2018
STATUS
approved