login
A298246
Expansion of Product_{k>=1} (1 + x^(k*(k+1)*(2*k+1)/6)).
4
1, 1, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 1, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 1, 2, 1, 0, 0, 0, 1, 1, 0, 1, 1, 0, 0, 0, 1
OFFSET
0,92
COMMENTS
Number of partitions of n into distinct square pyramidal numbers.
FORMULA
G.f.: Product_{k>=1} (1 + x^A000330(k)).
EXAMPLE
a(91) = 2 because we have [91] and [55, 30, 5, 1].
MATHEMATICA
nmax = 104; CoefficientList[Series[Product[1 + x^(k (k + 1) (2 k + 1)/6), {k, 1, nmax}], {x, 0, nmax}], x]
CROSSREFS
KEYWORD
nonn
AUTHOR
Ilya Gutkovskiy, Jan 15 2018
STATUS
approved