login
A298223
The first of three consecutive primes the sum of which is equal to the sum of three consecutive squares.
10
1511, 5923, 6553, 9791, 11003, 14153, 14633, 15121, 22787, 29231, 36473, 61991, 62987, 68111, 89393, 116273, 137633, 167267, 212501, 233279, 292673, 316957, 426401, 455603, 579113, 603719, 717397, 819017, 938953, 1018057, 1022113, 1292737, 1399477, 1510427
OFFSET
1,1
LINKS
EXAMPLE
1511 is in the sequence because 1511+1523+1531 (consecutive primes) = 4565 = 1444+1521+1600 (consecutive squares).
PROG
(PARI) L=List(); forprime(p=2, 400000, q=nextprime(p+1); r=nextprime(q+1); t=p+q+r; if(issquare(12*t-24, &sq) && (sq-6)%6==0, u=(sq-6)\6; listput(L, p))); Vec(L)
KEYWORD
nonn
AUTHOR
Colin Barker, Jan 15 2018
STATUS
approved