login
A298198
Number of Eulerian cycles in the graph Cartesian product of C_n and a double edge.
2
4, 40, 320, 2368, 16832, 116608, 793088, 5318656, 35271680, 231786496, 1511653376, 9795518464, 63126683648, 404881506304, 2586017398784, 16456474427392, 104381066510336, 660139718213632, 4163958223142912, 26202468819927040, 164527129801785344
OFFSET
1,1
COMMENTS
When n = 2 the graph is the Cartesian product of two double edges.
a(n) is divisible by 2^(n + 1).
LINKS
Eric Weisstein's World of Mathematics, Eulerian Cycle
FORMULA
a(n) = 14*a(n-1) - 60*a(n-2) + 72*a(n-3) for n > 3.
G.f.: 4*x*(1 - 4*x)/((1 - 2*x)*(1 - 6*x)^2).
PROG
(PARI) Vec(4*(1 - 4*x)/((1 - 2*x)*(1 - 6*x)^2) + O(x^30))
CROSSREFS
Row 2 of A298117.
Sequence in context: A061318 A277652 A190541 * A043031 A121126 A145730
KEYWORD
nonn
AUTHOR
Andrew Howroyd, Jan 14 2018
STATUS
approved