%I #4 Jan 14 2018 09:29:33
%S 0,5,5,10,27,53,114,257,561,1286,2875,6483,14836,33739,76959,176116,
%T 402969,923505,2117450,4857133,11149229,25598958,58792507,135063467,
%U 310331636,713157987,1639076783,3767508164,8660572913,19909853545
%N Number of nX6 0..1 arrays with every element equal to 3, 5, 6 or 8 king-move adjacent elements, with upper left element zero.
%C Column 6 of A298183.
%H R. H. Hardin, <a href="/A298181/b298181.txt">Table of n, a(n) for n = 1..210</a>
%F Empirical: a(n) = 4*a(n-1) -5*a(n-2) +8*a(n-3) -14*a(n-4) +5*a(n-5) -17*a(n-6) +19*a(n-7) +21*a(n-8) -2*a(n-9) +50*a(n-10) -75*a(n-11) +28*a(n-12) -57*a(n-13) +28*a(n-14) -52*a(n-15) +38*a(n-16) -22*a(n-17) -12*a(n-18) +4*a(n-19) +20*a(n-20) +8*a(n-21) -8*a(n-22)
%e Some solutions for n=7
%e ..0..0..0..1..1..1. .0..0..1..1..0..0. .0..0..1..1..1..1. .0..0..0..0..1..1
%e ..0..0..0..1..1..1. .0..0..1..1..0..0. .0..0..1..1..1..1. .0..0..0..0..1..1
%e ..0..0..0..0..0..0. .0..0..1..1..0..0. .0..0..0..0..0..0. .0..0..0..0..1..1
%e ..1..1..0..0..0..0. .0..0..0..0..0..0. .1..1..0..0..0..0. .0..0..0..0..1..1
%e ..1..1..0..0..0..0. .1..1..0..0..1..1. .1..1..0..0..0..0. .1..1..1..0..0..0
%e ..1..1..0..0..0..0. .1..1..0..0..1..1. .1..1..0..0..0..0. .1..1..1..0..0..0
%e ..1..1..0..0..0..0. .1..1..0..0..1..1. .1..1..0..0..0..0. .1..1..1..0..0..0
%Y Cf. A298183.
%K nonn
%O 1,2
%A _R. H. Hardin_, Jan 14 2018