%I #4 Jan 14 2018 09:28:51
%S 0,3,3,6,15,27,54,117,237,508,1073,2261,4852,10375,22175,47602,102187,
%T 219583,472170,1015449,2185065,4703176,10124077,21797129,46934664,
%U 101069563,217658203,468756814,1009568519,2174384483,4683219582
%N Number of nX5 0..1 arrays with every element equal to 3, 5, 6 or 8 king-move adjacent elements, with upper left element zero.
%C Column 5 of A298183.
%H R. H. Hardin, <a href="/A298180/b298180.txt">Table of n, a(n) for n = 1..210</a>
%F Empirical: a(n) = 2*a(n-1) +a(n-2) +a(n-3) -2*a(n-4) -5*a(n-5) -6*a(n-6) -4*a(n-7) +14*a(n-8) +6*a(n-9) -2*a(n-10)
%e Some solutions for n=7
%e ..0..0..1..1..1. .0..0..1..1..1. .0..0..1..1..1. .0..0..0..1..1
%e ..0..0..1..1..1. .0..0..1..1..1. .0..0..1..1..1. .0..0..0..1..1
%e ..0..0..1..1..1. .0..0..1..1..1. .0..0..1..1..1. .0..0..0..1..1
%e ..0..0..1..1..1. .0..0..1..1..1. .0..0..1..1..1. .0..0..0..1..1
%e ..1..1..1..0..0. .1..1..1..1..1. .0..0..0..0..0. .0..0..0..1..1
%e ..1..1..1..0..0. .1..1..1..0..0. .1..1..0..0..0. .1..1..0..0..0
%e ..1..1..1..0..0. .1..1..1..0..0. .1..1..0..0..0. .1..1..0..0..0
%Y Cf. A298183.
%K nonn
%O 1,2
%A _R. H. Hardin_, Jan 14 2018