login
A298100
T(n,k)=Number of nXk 0..1 arrays with every element equal to 3, 4, 5 or 6 king-move adjacent elements, with upper left element zero.
7
0, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 2, 0, 2, 0, 0, 3, 1, 1, 3, 0, 0, 5, 0, 3, 0, 5, 0, 0, 8, 3, 7, 7, 3, 8, 0, 0, 13, 0, 20, 5, 20, 0, 13, 0, 0, 21, 7, 42, 70, 70, 42, 7, 21, 0, 0, 34, 2, 121, 134, 847, 134, 121, 2, 34, 0, 0, 55, 19, 291, 941, 2934, 2934, 941, 291, 19, 55, 0, 0, 89, 10, 782, 3028
OFFSET
1,12
COMMENTS
Table starts
.0..0.0...0....0......0.......0........0..........0...........0.............0
.0..1.1...2....3......5.......8.......13.........21..........34............55
.0..1.0...1....0......3.......0........7..........2..........19............10
.0..2.1...3....7.....20......42......121........291.........782..........1987
.0..3.0...7....5.....70.....134......941.......3028.......15282.........61027
.0..5.3..20...70....847....2934....27671.....139992.....1031816.......5985115
.0..8.0..42..134...2934...16212...273251....2168179....29643572.....283552252
.0.13.7.121..941..27671..273251..6915147...95118943..1940454441...30542054392
.0.21.2.291.3028.139992.2168179.95118943.2015018055.72368534390.1813924173233
LINKS
FORMULA
Empirical for column k:
k=1: a(n) = a(n-1)
k=2: a(n) = a(n-1) +a(n-2)
k=3: a(n) = a(n-1) +2*a(n-2) -a(n-3) +a(n-4) -2*a(n-5)
k=4: [order 16]
k=5: [order 61]
EXAMPLE
Some solutions for n=7 k=4
..0..0..1..1. .0..0..1..1. .0..0..1..1. .0..0..1..1. .0..0..1..1
..0..0..1..1. .0..0..1..1. .0..0..1..1. .0..0..1..1. .0..0..1..1
..0..0..1..1. .0..0..1..1. .1..1..0..0. .0..0..0..0. .0..1..1..1
..0..0..1..1. .0..0..1..1. .1..1..0..0. .1..1..0..0. .0..0..1..1
..0..0..0..1. .0..0..1..1. .1..0..0..0. .1..1..0..0. .0..0..0..0
..0..0..1..1. .1..1..0..0. .1..1..0..0. .0..0..1..1. .1..1..0..0
..0..0..1..1. .1..1..0..0. .1..1..0..0. .0..0..1..1. .1..1..0..0
CROSSREFS
Column 2 is A000045(n-1).
Sequence in context: A193511 A254218 A263147 * A303636 A073274 A192323
KEYWORD
nonn,tabl
AUTHOR
R. H. Hardin, Jan 12 2018
STATUS
approved