login
A298096
Number of nX4 0..1 arrays with every element equal to 3, 4, 5 or 6 king-move adjacent elements, with upper left element zero.
1
0, 2, 1, 3, 7, 20, 42, 121, 291, 782, 1987, 5247, 13553, 35592, 92599, 242445, 632707, 1654855, 4323102, 11303415, 29540495, 77227391, 201859196, 527690923, 1379374791, 3605831654, 9425790420, 24639842009, 64410102689, 168373214417
OFFSET
1,2
COMMENTS
Column 4 of A298100.
LINKS
FORMULA
Empirical: a(n) = 5*a(n-2) +8*a(n-3) +2*a(n-4) -15*a(n-5) -23*a(n-6) -22*a(n-7) -9*a(n-8) +5*a(n-9) +20*a(n-10) +24*a(n-11) +23*a(n-12) +8*a(n-13) -3*a(n-14) -4*a(n-15) -2*a(n-16)
EXAMPLE
Some solutions for n=7
..0..0..1..1. .0..0..1..1. .0..0..1..1. .0..0..1..1. .0..0..1..1
..0..0..1..1. .0..0..1..1. .0..0..1..1. .0..0..1..1. .0..0..1..1
..1..1..1..1. .0..0..1..1. .0..0..0..1. .1..1..0..0. .0..0..1..1
..1..1..0..0. .0..1..1..1. .0..0..1..1. .1..1..0..0. .1..1..0..0
..1..1..0..0. .1..0..0..0. .0..1..1..1. .0..0..1..1. .1..1..0..0
..0..0..1..1. .1..1..0..0. .0..0..1..1. .0..0..1..1. .1..1..0..0
..0..0..1..1. .1..1..0..0. .0..0..1..1. .0..0..1..1. .1..1..0..0
CROSSREFS
Cf. A298100.
Sequence in context: A010758 A259419 A019224 * A053190 A135299 A092081
KEYWORD
nonn
AUTHOR
R. H. Hardin, Jan 12 2018
STATUS
approved