login
A298093
T(n,k)=Number of nXk 0..1 arrays with every element equal to 1, 2, 4 or 7 king-move adjacent elements, with upper left element zero.
6
0, 1, 1, 1, 3, 1, 2, 7, 7, 2, 3, 13, 15, 13, 3, 5, 23, 19, 19, 23, 5, 8, 49, 21, 30, 21, 49, 8, 13, 95, 33, 53, 53, 33, 95, 13, 21, 177, 53, 92, 45, 92, 53, 177, 21, 34, 359, 77, 149, 87, 87, 149, 77, 359, 34, 55, 705, 111, 250, 150, 171, 150, 250, 111, 705, 55, 89, 1351, 171, 426
OFFSET
1,5
COMMENTS
Table starts
..0...1...1...2...3...5...8..13..21...34...55...89..144...233...377...610...987
..1...3...7..13..23..49..95.177.359..705.1351.2689.5303.10321.20423.40353.79223
..1...7..15..19..21..33..53..77.111..171..269..415..643..1013..1605..2543..4041
..2..13..19..30..53..92.149.250.426..809.1456.2602.4606..8096.14731.27112.49118
..3..23..21..53..45..87.150.216.249..423..711..980.1560..2431..3368..5598..8655
..5..49..33..92..87.171.203.328.484..782.1106.1905.2833..4428..7210.11516.17938
..8..95..53.149.150.203.229.365.410..734..917.1484.2077..2943..4659..7326.10594
.13.177..77.250.216.328.365.417.593..783.1086.1490.1929..2529..3490..4795..6787
.21.359.111.426.249.484.410.593.822.1041.1437.2208.3116..4525..6831.10816.16439
LINKS
FORMULA
Empirical for column k:
k=1: a(n) = a(n-1) +a(n-2)
k=2: a(n) = 3*a(n-1) -2*a(n-2) +4*a(n-3) -10*a(n-4) +4*a(n-5) for n>6
k=3: a(n) = 2*a(n-1) -a(n-4) -a(n-5) -a(n-6) +a(n-7) +a(n-8) for n>9
k=4: [order 35] for n>40
k=5: [order 82] for n>86
EXAMPLE
Some solutions for n=7 k=4
..0..1..0..0. .0..1..0..0. .0..0..0..1. .0..1..0..1. .0..0..1..0
..0..1..1..1. .1..0..1..1. .0..1..0..1. .0..1..0..1. .1..1..0..1
..1..0..1..0. .0..1..0..1. .1..1..0..0. .0..1..0..1. .1..0..1..0
..1..0..1..0. .1..0..1..1. .1..1..0..0. .1..1..1..0. .1..1..1..0
..0..1..1..1. .0..1..0..0. .0..1..0..1. .0..0..1..0. .1..1..1..0
..0..1..0..0. .1..0..1..0. .1..0..1..0. .1..1..0..1. .1..0..1..0
..0..1..1..0. .1..0..0..0. .0..1..0..1. .1..0..1..0. .0..0..1..1
CROSSREFS
Column 1 is A000045(n-1).
Column 2 is A297852.
Column 3 is A297853.
Sequence in context: A135338 A084602 A297858 * A298055 A298888 A298660
KEYWORD
nonn,tabl
AUTHOR
R. H. Hardin, Jan 12 2018
STATUS
approved