login
A298000
Solution of the complementary equation a(n) = a(1)*b(n) - a(0)*b(n-1) + 2*n, where a(0) = 1, a(1) = 2, b(0) = 3, b(1) = 4, b(2) = 5, and (b(n)) is the increasing sequence of positive integers not in (a(n)). See Comments.
8
1, 2, 10, 13, 16, 19, 22, 27, 29, 34, 36, 41, 43, 48, 50, 55, 57, 60, 63, 68, 72, 74, 77, 80, 85, 89, 91, 94, 97, 102, 106, 108, 111, 114, 119, 123, 125, 128, 131, 136, 140, 142, 147, 149, 154, 156, 159, 162, 167, 169, 172, 177, 181, 183, 188, 190, 195, 197
OFFSET
0,2
COMMENTS
The increasing complementary sequences a() and b() are uniquely determined by the titular equation and initial values.
Conjectures: a(n) - (2 +sqrt(2))*n < 4 for n >= 1. Guide to related sequences having initial values a(0) = 1, a(1) = 2, b(0) = 3, b(1) = 4, b(2) = 5, where (b(n)) is the increasing sequence of positive integers not in (a(n)):
***
a(n) = a(1)*b(n) - a(0)*b(n-1) + n (a(n)) = A297999; (b(n)) = A298110
a(n) = a(1)*b(n) - a(0)*b(n-1) + 2*n (a(n)) = A298000; (b(n)) = A298111
a(n) = a(1)*b(n) - a(0)*b(n-1) + 3*n (a(n)) = A298001; (b(n)) = A298112
a(n) = a(1)*b(n) - a(0)*b(n-1) + 4*n (a(n)) = A298002; (b(n)) = A298113
LINKS
EXAMPLE
a(0) = 1, a(1) = 2, b(0) = 3, b(1) = 4, so that a(2) = 10.
Complement: (b(n)) = (3,4,5,6,8,9,11,12,14,15,17,18,20,...)
MATHEMATICA
a[0] = 1; a[1] = 2; b[0] = 3; b[1] = 4; b[2] = 5;
a[n_] := a[n] = a[1]*b[n] - a[0]*b[n - 1] + 2 n;
j = 1; While[j < 100, k = a[j] - j - 1;
While[k < a[j + 1] - j + 1, b[k] = j + k + 2; k++]; j++]; k
Table[a[n], {n, 0, k}] (* A298000 *)
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Clark Kimberling, Feb 04 2018
STATUS
approved