%I #4 Jan 10 2018 07:35:06
%S 3,166,424,1446,5100,18189,62390,213997,735000,2520806,8673171,
%T 29895212,103062319,355448168,1226378689,4232831248,14614818621,
%U 50474934066,174362780682,602441004444,2081828199132,7195055390173,24869853343749
%N Number of nX5 0..1 arrays with every element equal to 1, 2, 3 or 6 king-move adjacent elements, with upper left element zero.
%C Column 5 of A297993.
%H R. H. Hardin, <a href="/A297990/b297990.txt">Table of n, a(n) for n = 1..210</a>
%H R. H. Hardin, <a href="/A297990/a297990.txt">Empirical recurrence of order 99</a>
%F Empirical recurrence of order 99 (see link above)
%e Some solutions for n=7
%e ..0..1..1..0..0. .0..0..1..0..0. .0..1..1..1..0. .0..0..1..0..0
%e ..0..1..0..1..1. .1..1..1..1..1. .1..0..0..0..1. .1..0..1..0..1
%e ..0..1..0..1..0. .0..0..0..0..0. .1..1..1..1..0. .1..1..1..0..1
%e ..0..1..0..1..0. .0..1..1..1..0. .0..0..0..0..1. .1..0..1..0..1
%e ..1..0..1..0..1. .1..0..0..0..1. .0..1..1..1..0. .1..0..1..0..1
%e ..1..0..1..0..1. .0..1..1..0..1. .1..0..0..0..1. .1..0..1..0..1
%e ..0..0..1..1..0. .0..0..0..1..1. .0..1..1..0..1. .1..1..0..0..1
%Y Cf. A297993.
%K nonn
%O 1,1
%A _R. H. Hardin_, Jan 10 2018