This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A297968 Number of solutions to x*y*(x+y)=n in coprime integers. 2
 0, 4, 0, 0, 0, 6, 0, 0, 0, 0, 0, 6, 0, 0, 0, 0, 0, 0, 0, 6, 0, 0, 0, 0, 0, 0, 0, 0, 0, 12, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 6, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 6, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 6, 0, 6, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 6, 0, 0, 0, 0, 0, 6, 0, 0, 0, 0, 0, 0, 0, 0, 0 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS a(n)=0 if n is odd. - Robert Israel, Jan 10 2018 LINKS Robert Israel, Table of n, a(n) for n = 1..10000 C. L. Stewart, On the number of solutions of polynomial congruences and Thue equations, J. Amer. Math. Soc. 4 (1991), 793-835. S. Y. Xiao et al, Integers h such that xy(x+y)=h has many integer solutions, Math Overflow EXAMPLE For n=6 the a(n)=6 solutions are (x,y) = (-3,1), (-3,2), (1,-3), (1,2), (2,1) and (2,-3). MAPLE f:= proc(n) local d, count, x, s, ys;   d:= numtheory:-divisors(n);   count:= 0:   for x in d union map(`-`, d) do     if issqr(x^4+4*n*x) then       s:= sqrt(x^4+4*n*x);       ys:= select(t -> type(t, integer) and igcd(t, x)=1, [-(s+x^2)/(2*x), (x^2-s)/(2*x)]);       count:= count + nops(ys);     fi   od;   count end proc: map(f, [\$1..200]); CROSSREFS Sequence in context: A071326 A284103 A151674 * A243000 A285214 A285340 Adjacent sequences:  A297965 A297966 A297967 * A297969 A297970 A297971 KEYWORD nonn AUTHOR Robert Israel, Jan 10 2018 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified October 24 01:20 EDT 2018. Contains 316541 sequences. (Running on oeis4.)