login
A297959
T(n,k)=Number of nXk 0..1 arrays with every element equal to 1, 2, 4 or 5 king-move adjacent elements, with upper left element zero.
8
0, 1, 1, 1, 3, 1, 2, 7, 7, 2, 3, 13, 15, 13, 3, 5, 23, 25, 25, 23, 5, 8, 49, 47, 78, 47, 49, 8, 13, 99, 109, 233, 233, 109, 99, 13, 21, 189, 245, 779, 681, 779, 245, 189, 21, 34, 383, 545, 2359, 2596, 2596, 2359, 545, 383, 34, 55, 777, 1253, 7024, 11623, 11283, 11623, 7024
OFFSET
1,5
COMMENTS
Table starts
..0...1....1.....2......3.......5........8........13.........21..........34
..1...3....7....13.....23......49.......99.......189........383.........777
..1...7...15....25.....47.....109......245.......545.......1253........2859
..2..13...25....78....233.....779.....2359......7024......21572.......66763
..3..23...47...233....681....2596....11623.....39801.....149442......616286
..5..49..109...779...2596...11283....61204....284304....1375342.....6952910
..8..99..245..2359..11623...61204...483929...2884282...18478260...127847471
.13.189..545..7024..39801..284304..2884282..22145365..186612398..1682179108
.21.383.1253.21572.149442.1375342.18478260.186612398.2092206702.24910286308
LINKS
FORMULA
Empirical for column k:
k=1: a(n) = a(n-1) +a(n-2)
k=2: a(n) = 2*a(n-1) -a(n-2) +4*a(n-3) -4*a(n-4) for n>5
k=3: [order 12] for n>13
k=4: [order 62] for n>65
EXAMPLE
Some solutions for n=6 k=4
..0..1..1..0. .0..1..0..1. .0..1..0..1. .0..1..0..1. .0..1..0..1
..1..0..0..1. .1..0..0..1. .0..1..1..0. .1..0..0..1. .1..0..1..1
..1..0..0..1. .1..0..0..1. .0..1..1..0. .1..0..0..1. .0..1..0..0
..0..1..1..0. .1..0..0..1. .0..1..1..0. .0..1..1..0. .0..1..1..1
..0..1..1..1. .1..0..0..1. .0..1..1..0. .1..1..1..0. .0..1..1..0
..1..0..0..0. .0..1..1..0. .0..1..0..1. .0..0..1..0. .0..1..0..0
CROSSREFS
Column 1 is A000045(n-1).
Sequence in context: A298888 A298660 A299612 * A298775 A298582 A299574
KEYWORD
nonn,tabl
AUTHOR
R. H. Hardin, Jan 09 2018
STATUS
approved