login
A297919
Number of nX4 0..1 arrays with every element equal to 1, 2, 3 or 4 king-move adjacent elements, with upper left element zero.
1
2, 61, 588, 4771, 41762, 366976, 3211086, 28124318, 246367034, 2157960391, 18902287938, 165573001080, 1450318932860, 12703919125646, 111278723899553, 974734941827688, 8538094067939951, 74788589922049954, 655103252004255047
OFFSET
1,1
COMMENTS
Column 4 of A297923.
LINKS
FORMULA
Empirical: a(n) = 8*a(n-1) +6*a(n-2) +35*a(n-3) -195*a(n-4) -482*a(n-5) -558*a(n-6) +170*a(n-7) +2548*a(n-8) +2696*a(n-9) +697*a(n-10) -4698*a(n-11) -1707*a(n-12) +1985*a(n-13) +6963*a(n-14) -5034*a(n-15) -8439*a(n-16) -981*a(n-17) +6353*a(n-18) +1478*a(n-19) -1550*a(n-20) +1885*a(n-21) -22*a(n-22) -2536*a(n-23) -8*a(n-24) +990*a(n-25) -9*a(n-26) -108*a(n-27) +29*a(n-28) +2*a(n-29) -2*a(n-30) +a(n-31) for n>34
EXAMPLE
Some solutions for n=5
..0..1..0..0. .0..1..1..0. .0..1..1..0. .0..0..1..0. .0..1..1..0
..1..0..1..0. .0..1..1..0. .0..0..1..0. .0..1..0..1. .0..0..0..1
..0..0..1..0. .1..0..0..1. .1..1..0..1. .0..0..0..1. .1..1..1..1
..0..1..1..0. .1..0..1..0. .0..0..0..1. .1..1..1..0. .0..1..0..0
..1..0..1..0. .0..0..1..1. .1..1..0..0. .1..0..0..0. .0..0..0..0
CROSSREFS
Cf. A297923.
Sequence in context: A088078 A172230 A059004 * A298543 A298333 A299224
KEYWORD
nonn
AUTHOR
R. H. Hardin, Jan 08 2018
STATUS
approved