OFFSET
1,1
COMMENTS
The k-th Euclid number, A006862(k), is 1 plus the product of the first k primes, i.e., 1 + A002110(k). A113165 lists the numbers (> 1) that divide at least one Euclid number. It appears that the vast majority of terms in A113165 are prime; this sequence lists the composite numbers in A113165.
No composite less than 10^8 divides more than one Euclid number.
EXAMPLE
a(1) = 1843 because 1843 = 19*97 is the smallest composite number that divides a Euclid number: 1843 divides 1 + A002110(7) = 1 + 2*3*5*7*11*13*17 = 510511 = 19*97*277. (Thus, 5263 (= 19*277), 26869 (= 97*277), and 19*97*277 = 510511 itself are also composites that divide a Euclid number; 5263 = a(2), 26869 = a(6), and 510511 = a(11).)
CROSSREFS
KEYWORD
nonn
AUTHOR
Jon E. Schoenfield, Jan 07 2018
STATUS
approved