login
A297885
Number of nX4 0..1 arrays with every element equal to 0, 1, 2 or 4 king-move adjacent elements, with upper left element zero.
1
8, 29, 26, 36, 84, 134, 223, 396, 638, 1173, 2157, 3812, 6922, 12304, 21936, 40412, 73746, 133407, 243158, 440979, 803278, 1473594, 2689801, 4905976, 8967627, 16372815, 29949905, 54844798, 100263893, 183363553, 335520346, 613789492
OFFSET
1,1
COMMENTS
Column 4 of A297889.
LINKS
FORMULA
Empirical: a(n) = a(n-1) +2*a(n-2) +4*a(n-3) -3*a(n-4) -6*a(n-5) -6*a(n-6) -16*a(n-7) -11*a(n-8) +6*a(n-9) +60*a(n-10) +84*a(n-11) +44*a(n-12) -55*a(n-13) -155*a(n-14) -116*a(n-15) -26*a(n-16) +76*a(n-17) +47*a(n-18) +5*a(n-19) +9*a(n-20) +69*a(n-21) +139*a(n-22) +82*a(n-23) -18*a(n-24) -119*a(n-25) -105*a(n-26) -39*a(n-27) +14*a(n-28) +24*a(n-29) +10*a(n-30) for n>34
EXAMPLE
Some solutions for n=7
..0..0..1..0. .0..1..0..0. .0..1..1..1. .0..1..1..1. .0..1..1..1
..1..0..1..1. .1..0..1..1. .0..1..0..1. .1..0..0..0. .0..1..0..1
..1..0..0..0. .1..0..0..0. .1..0..1..1. .1..0..0..1. .1..1..0..0
..0..0..1..1. .0..0..1..1. .0..1..0..0. .0..1..1..1. .1..1..0..0
..1..1..0..0. .1..1..0..0. .0..1..1..1. .1..1..0..0. .0..1..0..1
..0..0..0..1. .0..1..1..1. .1..0..1..0. .0..0..1..1. .1..0..1..0
..0..1..1..0. .1..0..0..1. .1..0..1..0. .0..1..0..1. .0..1..0..1
CROSSREFS
Cf. A297889.
Sequence in context: A374138 A068623 A361585 * A298290 A298490 A299183
KEYWORD
nonn
AUTHOR
R. H. Hardin, Jan 07 2018
STATUS
approved